门头沟区2018年初三年级综合练习(一)
数学答案及评分参考
一、选择题(本题共16分,每小题2分)
题号
1
2
3
4
5
6
7
8
答案
B
C
B
D
A
D
C
D
二、填空题(本题共16分,每小题2分)
题号
9
10
11
12
答案
4
答案不唯一
例:AD
4
不合理,样本数据不具有代表性
(例:夏季高峰用电量大不能代表年平均用电量)
题号
13
14
15
答案
26°
答案不唯一(例:先将图1以点A为旋转中心逆时针旋转90
再将旋转后的图形向左平移5各单位)
题号
16
答案
等圆的半径相等,直径所对的圆周角是直角,三角形定义
三、解答题(本题共68分,第17题-24题,每小题5分,第25题6分,第26题7分,第27题7分, 第28题8分)解答应写出文字说明、演算步骤或证明过程
17.(本小题满分5分)
解:原式 …………………………………………………………………………4分
………………………………………………………………………………………………5分
18.(本小题满分5分)
解不等式①得,x<3, ……………………………………………………………………………2分
解不等式②得,x≥﹣2, ……………………………………………………………………………4分
所以,不等式组的解集是﹣2≤x<3. ……………………………………………………………5分
19.解 (本小题满分5分)∵BE平分∠ABC,
∴∠ABC=2∠ABE=2×25°=50°, ………2分
∵AD是BC边上的高,
∴∠BAD=90°﹣∠ABC=90°﹣50°=40°, …………4分
∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20° ………………5分
20.(本小题满分5分)
(1)∵直线与双曲线(k≠0)相交于点 .
∴,……………………………………………………………………1分
九年级数学评标 第6页(共6页)
∴
∴,解得………………………2分
(2)示意图正确………………………………3分
………………………………5分
21. (1)证明:∵EF是AC的垂直平分线,
∴AO=OC,∠AOE=∠COF=90°,……………………1分
∵四边形ABCD是矩形,
∴AD∥BC,∴∠EAO=∠FCO,
在△AEO和△CFO中,
∵∠EAO=∠FCO,AO=CO,∠AOE=∠COF,
∴△AEO≌△CFO(ASA),
∴OE=OF. ……………2分
又∵OA=OC,∴四边形AECF是平行四边形,
又∵EF⊥AC,∴平行四边形AECF是菱形;……………3分
(2)设AF=x,∵EF是AC的垂直平分线,
∴AF=CF=x,BF=8﹣x, ………………………………………4分
在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,42+(8﹣x)2=x2,
解得 x=5,∴AF=5,∴菱形AECF的周长为20.…………………5分
22(本小题满分5分)
解:(1)由题意得,.………………………………………1分
∴. ………………………………………2分
(2)∵为正整数,
∴.
当时,方程有一个根为零;……………………3分
当时,方程无整数根; ……………………4分
当时,方程有两个非零的整数根.
综上所述,和不合题意,舍去;符合题意.……………5分
23. (本小题满分5分)
(1)证明:连接OC,
九年级数学评标 第6页(共6页)
∵射线DC切⊙O于点C, ∴∠OCP=90°
∵DE⊥AP,∴∠DEP=90°
∴∠P+∠D=90°,∠P+∠COB=90°
∴∠COB=∠D …………………1分
∵OA=OC, ∴∠A=∠OCA
∵∠COB=∠A+∠OCA ∴∠COB=2∠A
∴∠D=2∠A …………………2分
(2)解:由(1)可知:∠OCP=90°,∠COP=∠D,
∴cos∠COP=cos∠D=, …………………3分
∵CH⊥OP,∴∠CHO=90°,
设⊙O的半径为r,则OH=r﹣2.
在Rt△CHO中,cos∠HOC===,
∴r=5, …………………4分
∴OH=5﹣2=3,
∴由勾股定理可知:CH=4,∴AH=AB﹣HB=10﹣2=8.
在Rt△AHC中,∠CHA=90°,∴由勾股定理可知:AC=.…………………5分
24.(1)补全表格正确:
初一: 8 …………………………………………1分
众数:89 …………………………………………2分
中位数:77 …………………………………………3分
(2)可以从给出的三个统计量去判断
如果利用其它标准推断要有数据说明合理才能得分………………5分
25.(本小题满分6分)
(1)5 ……………………………………………………………………1分
(2)坐标系正确 ……………………………………………………3分
描点正确 ……………………………………………………4分
连线正确 ……………………………………………………5分
(3)4.5 ……………………………………………………………………6分
九年级数学评标 第6页(共6页)
26. (本小题满分7分)
(1)解:有上述信息可知该函数图象的顶点坐标为:
设二次函数表达式为: ……………1分
∵该图象过
∴,解得 ……………2分
∴表达式为
(2)图象正确………………………………………………………3分
由已知条件可知直线与图形“G”要有三个交点
① 当直线与x轴重合时,有2个交点,由二次函数的轴对称性可求
……………………………………4分
∴ ……………………………………5分
②当直线过的图象顶点时,有2个交点,
由翻折可以得到翻折后的函数图象为
∴令时,解得,舍去…………6分
∴
综上所述…………7分
27.(本小题满分7分)
(1) ……………………………………………1分
(2)①补全图形正确 ……………………………………2分
②数量关系:…………………………………3分
∵
∴DA平分
∵,
∴ , ……………………4分
∵
∴
九年级数学评标 第6页(共6页)
∵
∴
∴ ……………………5分
∴
③数量关系:……………………6分
证明思路:
a.由可得
b. 由可得,进而通过,可得
进而得到
c.过可得,最终得到 ……………7分
28.(本小题满分8分)
解: (1). ……………………………………………2分
由图可知,B
∵A(1,3) ∴AB=4
∵为等腰直角三角形
∴BC=4
∴
设直线AC的表达式为
当时,
…………………………………3分
当时,
…………………………………4分
∴综上所述,直线AC的表达式是或
(2)当点F在点E左侧时:
九年级数学评标 第6页(共6页)
当点F在点E右侧时:
…………………………………7分
综上所述: …………………………………8分
说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。
九年级数学评标 第6页(共6页)