由莲山课件提供http://www.5ykj.com/ 资源全部免费
2018年四川省宜宾市中考数学模拟试卷(一)
一、选择题(本大题共8小题,每小题3分,共24分)
1.(3分)计算(a3)2的结果是( )
A.a5 B.a6 C.a8 D.a9
2.(3分)太阳的半径约为696000km,把696000这个数用科学记数法表示为( )
A.6.96×103 B.69.6×105 C.6.96×105 D.6.96×106
3.(3分)如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是( )
A. B. C. D.
4.(3分)已知关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根,则a的值是( )
A.4 B.﹣4 C.1 D.﹣1
5.(3分)为了考察某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm)为:
16 9 14 11 12 10 16 8 17 19
则这组数据的中位数和极差分别是( )
A.13,16 B.14,11 C.12,11 D.13,11
6.(3分)如图,∠1=∠2,∠3=40°,则∠4等于( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.120° B.130° C.140° D.40°
7.(3分)如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠使AB落在AD边上,折痕为AE,再将△ABE以BE为折痕向右折叠,AE与CD交于点F,则的值是( )
A.1 B. C. D.
8.(3分)如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是( )
A.5个 B.4个 C.3个 D.2个
二、填空题(本大题共8小题,每小题3分,共24分)
9.(3分)分解因式:ax2+2ax﹣3a= .
10.(3分)将抛物线y=x2﹣2向上平移一个单位后,得一新的抛物线,那么新的抛物线的表达式是 .
11.(3分)某商品的原价为100元,如果经过两次降价,且每次降价的百分率都是m,那么该商品现在的价格是 元(结果用含m的代数式表示).
12.(3分)若的值为零,则x的值是 .
13.(3分)如图,在对角线长分别为12和16的菱形ABCD中,E、F分别是边AB、AD的中点,H是对角线BD上的任意一点,则HE+HF的最小值是 .
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
14.(3分)如图,已知⊙O是以数轴的原点O为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设OP=x,则x的取值范围是 .
15.(3分)如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第6个五边形数是 .
16.(3分)在平面直角坐标系中,对于任意两点A(x1,y1)B (x2,y2),规定运算:
(1)A⊕B=(x1+x2,y1+y2);
(2)A⊙B=x1x2+y1y2;
(3)当x1=x2且y1=y2时,A=B.
有下列四个命题:
①若有A(1,2),B(2,﹣1),则A⊕B=(3,1),A⊙B=0;
②若有A⊕B=B⊕C,则A=C;
③若有A⊙B=B⊙C,则A=C;
④(A⊕B)⊕C=A⊕(B⊕C)对任意点A、B、C均成立.
其中正确的命题为 (只填序号)
三、解答题(本大题共8个题,共72分)
17.(10分)计算:
(1)|﹣2|+2 0100﹣(﹣)﹣1+3tan30°.
(2)÷(a+1)﹣.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
18.(6分)已知:如图,点E,F分别为▱ABCD的BC,AD边上的点,且∠1=∠2.
求证:AE=FC.
19.(8分)如图,暑假快要到了,某市准备组织同学们分别到A,B,C,D四个地方进行夏令营活动,前往四个地方的人数.
(1)去B地参加夏令营活动人数占总人数的40%,根据统计图求去B地的人数?
(2)若一对姐弟中只能有一人参加夏令营,姐弟俩提议让父亲决定.父亲说:现有4张卡片上分别写有1,2,3,4四个整数,先让姐姐随机地抽取一张后放回,再由弟弟随机地抽取一张.若抽取的两张卡片上的数字之和是5的倍数则姐姐参加,若抽取的两张卡片上的数字之和是3的倍数则弟弟参加.用列表法或树形图分析这种方法对姐弟俩是否公平?
20.(8分)甲、乙两名学生练习计算机打字,甲打一篇1000字的文章与乙打一篇900字的文章所用的时间相同.已知甲每分钟比乙每分钟多打5个字,问:甲、乙两人每分钟各打多少个字?
21.(8分)如图,为了测量出楼房AC的高度,从距离楼底C处60米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°=,cos=,tan53°=,≈1.732,结果精确到0.1米)
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
22.(10分)如图,已知反比例函数y=的图象与直线y=﹣x+b都经过点A(1,4),且该直线与x轴的交点为B.
(1)求反比例函数和直线的解析式;
(2)求△AOB的面积.
23.(10分)如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.
(1)求证:PA是⊙O的切线;
(2)若PD=,求⊙O的直径.
24.(12分)如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC,CD.
(1)求抛物线的函数表达式;
(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标;
(3)点M在y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
2018年四川省宜宾市中考数学模拟试卷(一)
参考答案与试题解析
一、选择题(本大题共8小题,每小题3分,共24分)
1.
【解答】解:(a3)2=a6,
故选:B.
2.
【解答】解:将696000用科学记数法表示为6.96×105.
故选:C.
3.
【解答】解:从几何体上面看,是左边2个,右边1个正方形.
故选:D.
4.
【解答】解:根据题意得△=22﹣4•(﹣a)=0,
解得a=﹣1.
故选:D.
5.
【解答】解:将数据从小到大排列为:8,9,10,11,12,14,16,16,17,19,
中位数为:13;
极差=19﹣8=11.
故选:D.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
6.
【解答】解:∵∠1=∠2,
∴a∥b,
∴∠3=∠5,
∵∠3=40°,
∴∠5=40°,
∴∠4=180°﹣40°=140°,
故选:C.
7.
【解答】解:由题意知:AB=BE=6,BD=AD﹣AB=2,AD=AB﹣BD=4;
∵CE∥AB,
∴△ECF∽△ADF,
得=,
即DF=2CF,所以CF:CD=1:3;
故选:C.
8.
【解答】解:∵二次函数y=ax2+bx+c(a≠0)过点(0,1)和(﹣1,0),
∴c=1,a﹣b+c=0.
①∵抛物线的对称轴在y轴右侧,∴x=﹣>0,
∴a与b异号,∴ab<0,正确;
②∵抛物线与x轴有两个不同的交点,∴b2﹣4ac>0,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵c=1,∴b2﹣4a>0,b2>4a,正确;
④∵抛物线开口向下,∴a<0,
∵ab<0,∴b>0.
∵a﹣b+c=0,c=1,∴a=b﹣1,
∵a<0,∴b﹣1<0,b<1,
∴0<b<1,正确;
③∵a﹣b+c=0,∴a+c=b,
∴a+b+c=2b>0.
∵b<1,c=1,a<0,
∴a+b+c=a+b+1<a+1+1=a+2<0+2=2,
∴0<a+b+c<2,正确;
⑤抛物线y=ax2+bx+c与x轴的一个交点为(﹣1,0),设另一个交点为(x0,0),则x0>0,
由图可知,当x0>x>﹣1时,y>0,错误;
综上所述,正确的结论有①②③④.
故选:B.
二、填空题(本大题共8小题,每小题3分,共24分)
9.
【解答】解:ax2+2ax﹣3a=a(x2+2x﹣3)=a(x+3)(x﹣1).
故答案为:a(x+3)(x﹣1)
10.
【解答】解:y=x2﹣2的顶点坐标为(0,﹣2),把点(0,﹣2)向上平移一个单位后所得对应点的坐标为(0,﹣1),所以新的抛物线的表达式是y=x2﹣1.
故答案为y=x2﹣1.
11.
【解答】
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
解:第一次降价后价格为100(1﹣m)元,第二次降价是在第一次降价后完成的,所以应为100(1﹣m)(1﹣m)元,
即100(1﹣m)2元.
故答案为:100(1﹣m)2.
12.
【解答】解:由分子|x|﹣3=0,得x±3,而当x=3时,分母x2﹣2x﹣3=0,此时该分式无意义,
所以当x=﹣3,故若的值为零,则x的值是﹣3.
13.
【解答】解:如图:
作EE′⊥BD交BC于E′,连接E′F,连接AC交BD于O.
则E′F就是HE+HF的最小值,
∵E、F分别是边AB、AD的中点,
∴E′FAB,
而由已知△AOB中可得AB====10,
故HE+HF的最小值为10.
故答案为:10.
14.
【解答】解:设切点为C,连接OC,则圆的半径OC=1,OC⊥PC,
∵∠AOB=45°,OA∥PC,
∴∠OPC=45°,
∴PC=OC=1,
∴OP=,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
同理,原点左侧的距离也是,且线段是正数,
∴x的取值范围是0<x≤.
故答案为:0<x≤.
15.
【解答】解:∵5﹣1=4,
12﹣5=7,
22﹣12=10,
∴相邻两个图形的小石子数的差值依次增加3,
∴第5个五边形数是22+13=35,
第6个五边形数是35+16=51.
故答案为:51.
16.
【解答】解:①∵A(1,2),B(2,﹣1),
∴A⊕B=(1+2,2﹣1),A⊙B=1×2+2×(﹣1),
即A⊕B=(3,1),A⊙B=0,故①正确;
②设C(x3,y3),则A⊕B=(x1+x2,y1+y2),B⊕C=(x2+x3,y2+y3),
而A⊕B=B⊕C,
所以x1+x2=x2+x3,y1+y2=y2+y3,则x1=x3,y1=y3,
所以A=C,故②正确;
③A⊙B=x1x2+y1y2,B⊙C=x2x3+y2y3,
而A⊙B=B⊙C,则x1x2+y1y2=x2x3+y2y3,
不能得到x1=x3,y1=y3,
所以A≠C,故③不正确;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
④因为(A⊕B)⊕C=(x1+x2+x3,y1+y2+y3),A⊕(B⊕C)=(x1+x2+x3,y1+y2+y3),
所以(A⊕B)⊕C=A⊕(B⊕C),故④正确.
综上所述,正确的命题为①②④.
故答案为:①②④.
三、解答题(本大题共8个题,共72分)
17.
【解答】解:(1)原式=2﹣+1+3+3×=6;
(2)原式=•﹣
=﹣
=
=﹣1.
18.
【解答】证明:∵四边形ABCD是平行四边形,
∴AB=CD,∠B=∠D.
在△ABE与△CDF中,
,
∴△ABE≌△CDF,
∴AE=CF.
19.
【解答】解:(1)设去B地的人数为x,
则由题意有:;
解得:x=40.
∴去B地的人数为40人.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)列表:
4
(1,4)
(2,4)
(3,4)
(4,4)
3
(1,3)
(2,3)
(3,3)
(4,3)
2
(1,2)
(2,2)
(3,2)
(4,2)
1
(1,1)
(2,1)
(3,1)
(4,1)
1
2
3
4
∴姐姐能参加的概率,
弟弟能参加的概率为,
∵<,
∴不公平.
20.
【解答】解:设乙每分钟打x个字,则甲每分钟打(x+5)个字,
根据题意得: =,
解得:x=45,
经检验,x=45是原方程的解,且符合题意,
∴x+5=50.
答:甲每分钟打50个字,乙每分钟打45个字.
21.
【解答】解:如图作BN⊥CD于N,BM⊥AC于M.
在Rt△BDN中,BD=30,BN:ND=1:,
∴BN=15,DN=15,
∵∠C=∠CMB=∠CNB=90°,
∴四边形CMBN是矩形,
∴CM=BN=15,BM=CN=60﹣15 =45,
在Rt△ABM中,tan∠ABM==,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴AM=60,
∴AC=AM+CM=15+60≈118.9
22.
【解答】解:(1)把A(1,4)代入y=得k=1×4=4,
所以反比例函数的解析式为y=;
把A(1,4)代入y=﹣x+b得﹣1+b=4,解得b=5,
所以直线解析式为y=﹣x+5;
(2)当y=0时,﹣x+5=0,解得x=5,则B(5,0),
所以△AOB的面积=×5×4=10.
23.
【解答】解:(1)证明:连接OA,
∵∠B=60°,
∴∠AOC=2∠B=120°,
又∵OA=OC,
∴∠OAC=∠OCA=30°,
又∵AP=AC,
∴∠P=∠ACP=30°,
∴∠OAP=∠AOC﹣∠P=90°,
∴OA⊥PA,
∴PA是⊙O的切线.
(2)在Rt△OAP中,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵∠P=30°,
∴PO=2OA=OD+PD,
又∵OA=OD,
∴PD=OA,
∵PD=,
∴2OA=2PD=2.
∴⊙O的直径为2.
24.
【解答】解:(1)∵抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),
∴设抛物线解析式为y=a(x+2)(x﹣4),
∴﹣8a=4,
∴a=﹣,
∴抛物线解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+4;
(2)如图1,
①点E在直线CD上方的抛物线上,记E′,
连接CE′,过E′作E′F′⊥CD,垂足为F′,
由(1)知,OC=4,
∵∠ACO=∠E′CF′,
∴tan∠ACO=tan∠E′CF′,
∴=,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
设线段E′F′=h,则CF′=2h,
∴点E′(2h,h+4)
∵点E′在抛物线上,
∴﹣(2h)2+2h+4=h+4,
∴h=0(舍)h=
∴E′(1,),
②点E在直线CD下方的抛物线上,记E,
连接CE,过E作EF⊥CD,垂足为F,
由(1)知,OC=4,
∵∠ACO=∠ECF,
∴tan∠ACO=tan∠ECF,
∴=,
设线段EF=h,则CF=2h,
∴点E(2h,4﹣h)
∵点E在抛物线上,
∴﹣(2h)2+2h+4=4﹣h,
∴h=0(舍)h=
∴E(3,),
点E的坐标为(1,),(3,)
(3)①CM为菱形的边,如图2,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
在第一象限内取点P′,过点P′作P′N′∥y轴,交BC于N′,过点P′作P′M′∥BC,交y轴于M′,
∴四边形CM′P′N′是平行四边形,
∵四边形CM′P′N′是菱形,
∴P′M′=P′N′,
过点P′作P′Q′⊥y轴,垂足为Q′,
∵OC=OB,∠BOC=90°,
∴∠OCB=45°,
∴∠P′M′C=45°,
设点P′(m,﹣m2+m+4),
在Rt△P′M′Q′中,P′Q′=m,P′M′=m,
∵B(4,0),C(0,4),
∴直线BC的解析式为y=﹣x+4,
∵P′N′∥y轴,
∴N′(m,﹣m+4),
∴P′N′=﹣m2+m+4﹣(﹣m+4)=﹣m2+2m,
∴m=﹣m2+2m,
∴m=0(舍)或m=4﹣2,
菱形CM′P′N′的边长为(4﹣2)=4﹣4.
②CM为菱形的对角线,如图3,
在第一象限内抛物线上取点P,过点P作PM∥BC,
交y轴于点M,连接CP,过点M作MN∥CP,交BC于N,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴四边形CPMN是平行四边形,连接PN交CM于点Q,
∵四边形CPMN是菱形,
∴PQ⊥CM,∠PCQ=∠NCQ,
∵∠OCB=45°,
∴∠NCQ=45°,
∴∠PCQ=45°,
∴∠CPQ=∠PCQ=45°,
∴PQ=CQ,
设点P(n,﹣n2+n+4),
∴CQ=n,OQ=n+4,
∴n+4=﹣n2+n+4,
∴n=0(舍),
∴此种情况不存在.
∴菱形的边长为4﹣4.
由莲山课件提供http://www.5ykj.com/ 资源全部免费