2018年贵州省遵义市桐梓县中考数学一模试卷
一、选择题(共12小题,每小题3分,满分36分)
1.(3分)在0,1,﹣2,3这四个数中,最小的数是( )
A.﹣2 B.1 C.0 D.3
2.(3分)如图是由7个完全相同的小立方块搭成的几何体,那么这个几何体的左视图是( )
A. B. C. D.
3.(3分)赤水市是全国著名的红色旅游城市,每年都吸引众多海内游客来观光、旅游,据有关部门统计报道:2017年全市共接待游客约1634万人次,1634万用科学记数法表示为( )
A.1.634×108 B.1.634×107 C.1.634×106 D.16.34×106
4.(3分)如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为( )
A.50° B.45° C.40° D.30°
5.(3分)下列运算中,正确的是( )
A.5a﹣2a=3 B.(x+2y)2=x2+4y2 C.x8÷x4=x2 D.(2a)3=8a3
6.(3分)甲、乙、丙三种糖果的售价分别为每千克6元、7元、8元,若将甲种8千克,乙种10千克,丙种3千克混在一起,则售价应定为每千克( )
A.7元 B.6.8元 C.7.5元 D.8.6元
7.(3分)关于x的方程无解,则m的值为( )
A.﹣5 B.﹣8 C.﹣2 D.5
8.(3分)把不等式组的解集表示在数轴上,正确的是( )
A. B. C. D.
9.(3分)如果多项式p=a2+2b2+2a+4b+5,则p的最小值是( )
A.1 B.2 C.3 D.4
10.(3分)如图,在矩形纸片ABCD中,AB=4,AD=3,折叠纸片使DA与对角线DB重合,点A落在点A′处,折痕为DE,则A′E的长是( )
A.1 B. C. D.2
11.(3分)如图,在四边形ABCD中,AB=CD,M,N,P分别是AD,BC,BD的中点,若∠MPN=130°,则∠NMP的度数为( )
A.10° B.15° C.25° D.40°
12.(3分)如图,抛物线m:y=ax2+b(a<0,b>0)与x轴于点A、B(点A在点B的左侧),与y轴交于点C.将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为C1,与x轴的另一个交点为A1.若四边形AC1A1C为矩形,则a,b应满足的关系式为( )
A.ab=﹣2 B.ab=﹣3 C.ab=﹣4 D.ab=﹣5
二、填空题(共6小题,每小题4分,满分24分)
13.(4分)计算: = .
14.(4分)若关于x的方程2x2+x﹣a=0有两个不相等的实数根,则实数a的取值范围是 .
15.(4分)如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为 cm.
16.(4分)猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是 .
17.(4分)如图,将半径为3的圆形纸片,按下列顺序折叠.若和都经过圆心O,则阴影部分的面积是 (结果保留π)
18.(4分)如图,在平面直角坐标系xOy中,点A,B在双曲线y=(k是常数,且k≠0)上,过点A作AD⊥x轴于点D,过点B作BC⊥y轴于点C,已知点A的坐标为(4,),四边形ABCD的面积为4,则点B的坐标为 .
三、解答题(共9小题,满分90分)
19.(6分)计算:﹣12018+(π﹣5)0+4﹣3tan60°.
20.(8分)化简分式:(﹣)÷并从﹣2,0,1,2这四个数中选取一个合适的数作a的值代入求值.
21.(8分)金桥学校“科技体艺节”期间,八年级数学活动小组的任务是测量学校旗杆AB的高,他们在旗杆正前方台阶上的点C处,测得旗杆顶端A的仰角为45°,朝着旗杆的方向走到台阶下的点F处,测得旗杆顶端A的仰角为60°,已知升旗台的高度BE为1米,点C距地面的高度CD为3米,台阶CF的坡角为30°,且点E、F、D在同一条直线上,求旗杆AB的高度(计算结果精确到0.1米,参考数据:≈1.41,≈1.73)
22.(10分)某中学决定在本校学生中开展足球、篮球、羽毛球、乒乓球四种活动,为了了解学生对这四种活动的喜爱情况,学校随机调查了该校m名学生,看他们喜爱哪一种活动(每名学生必选一种且只能从这四种活动中选择一种),现将调查的结果绘制成如下不完整的统计图.请你根据图中的信息,解答下列问题.
(1)m= ,n= ;
(2)请补全图中的条形图;
(3)扇形统计图中,足球部分的圆心角是 度;
(4)根据抽样调查的结果,请估算全校1800名学生中,大约有多少人喜爱踢足球.
23.(10分)如图,甲、乙用这4张扑克牌玩游戏,他俩将扑克牌洗匀后背面朝上,放置在桌面上.
(1)甲从中任抽取一张,抽到4的概率是多少?
(2)甲、乙没人抽一张,甲先抽,乙后抽,抽出的牌不放回,甲、乙约定;只有甲抽到的牌面数字比乙大时甲胜.请你用树状图或列表法说明甲、乙获胜的机会是否相同.
24.(10分)如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.
(1)请判断四边形EBGD的形状,并说明理由;
(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.
25.(12分)某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:
①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:
时间(第x天)
1
3
6
10
…
日销售量(m件)
198
194
188
180
…
②该产品90天内每天的销售价格与时间(第x天)的关系如下表:
时间(第x天)
1≤x<50
50≤x≤90
销售价格(元/件)
x+60
100
(1)求m关于x的一次函数表达式;
(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?
(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.
26.(12分)已知:如图.△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连接AD.
(1)求证:∠DAC=∠DBA;
(2)求证:P是线段AF的中点;
(3)若⊙O的半径为5,AF=,求tan∠ABF的值.
27.(14分)在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.
求S关于m的函数关系式,并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.
2018年贵州省遵义市桐梓县中考数学一模试卷
参考答案与试题解析
一、选择题(共12小题,每小题3分,满分36分)
1.(3分)在0,1,﹣2,3这四个数中,最小的数是( )
A.﹣2 B.1 C.0 D.3
【解答】解:∵﹣2<0<1<3,
∴最小的数是﹣2,
故选:A.
2.(3分)如图是由7个完全相同的小立方块搭成的几何体,那么这个几何体的左视图是( )
A. B. C. D.
【解答】解:从左面可看到从左往右2列小正方形的个数为:3,1,故选A.
3.(3分)赤水市是全国著名的红色旅游城市,每年都吸引众多海内游客来观光、旅游,据有关部门统计报道:2017年全市共接待游客约1634万人次,1634万用科学记数法表示为( )
A.1.634×108 B.1.634×107 C.1.634×106 D.16.34×106
【解答】解:1634万=1.634×107,
故选:B.
4.(3分)如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为( )
A.50° B.45° C.40° D.30°
【解答】解:∵l1∥l2,
∴∠1=∠ABC=50°.
∵CD⊥AB于点D,
∴∠CDB=90°.
∴∠BCD+∠DBC=90°,即∠BCD+50°=90°.
∴∠BCD=40°.
故选:C.
5.(3分)下列运算中,正确的是( )
A.5a﹣2a=3 B.(x+2y)2=x2+4y2 C.x8÷x4=x2 D.(2a)3=8a3
【解答】解:A、5a﹣2a=3a,故错误;
B、(x+2y)2=x2+4xy+4y2,故错误;
C、x8÷x4=x4,故错误;
D、正确;
故选:D.
6.(3分)甲、乙、丙三种糖果的售价分别为每千克6元、7元、8元,若将甲种8千克,乙种10千克,丙种3千克混在一起,则售价应定为每千克( )
A.7元 B.6.8元 C.7.5元 D.8.6元
【解答】解:售价应定为:≈6.8(元);
故选:B.
7.(3分)关于x的方程无解,则m的值为( )
A.﹣5 B.﹣8 C.﹣2 D.5
【解答】解:去分母得:3x﹣2=2x+2+m,
由分式方程无解,得到x+1=0,即x=﹣1,
代入整式方程得:﹣5=﹣2+2+m,
解得:m=﹣5,
故选:A.
8.(3分)把不等式组的解集表示在数轴上,正确的是( )
A. B. C. D.
【解答】解:解不等式x+1>0得:x>﹣1,
解不等式2x﹣4≤0得:x≤2,
则不等式的解集为:﹣1<x≤2,
在数轴上表示为:
.
故选:B.
9.(3分)如果多项式p=a2+2b2+2a+4b+5,则p的最小值是( )
A.1 B.2 C.3 D.4
【解答】解:p=a2+2b2+2a+4b+5=(a+1)2+2(b+1)2+2≥2,
故选:B.
10.(3分)如图,在矩形纸片ABCD中,AB=4,AD=3,折叠纸片使DA与对角线DB重合,点A落在点A′处,折痕为DE,则A′E的长是( )
A. 1 B. C. D.2
【解答】解:∵四边形ABCD是矩形,
∴∠A=90°,
∴BD==5,
由折叠的性质,可得:A′D=AD=3,A′E=AE,∠DA′E=90°,
∴A′B=BD﹣A′D=5﹣3=2,
设A′E=x,
则AE=x,BE=AB﹣AE=4﹣x,
在Rt△A′BE中,A′E2+A′B2=BE2,
∴x2+4=(4﹣x)2,
解得:x=.
∴A′E=.
故选:C.
11.(3分)如图,在四边形ABCD中,AB=CD,M,N,P分别是AD,BC,BD的中点,若∠MPN=130°,则∠NMP的度数为( )
A.10° B.15° C.25° D.40°
【解答】解:∵在四边形ABCD中,M、N、P分别是AD、BC、BD的中点,
∴PN,PM分别是△CDB与△DAB的中位线,
∴PM=AB,PN=DC,PM∥AB,PN∥DC,
∵AB=CD,
∴PM=PN,
∴△PMN是等腰三角形,
∵∠MPN=130°,
∴∠PMN==25°.
故选:C.
12.(3分)如图,抛物线m:y=ax2+b(a<0,b>0)与x轴于点A、B(点A在点B的左侧),与y轴交于点C.将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为C1,与x轴的另一个交点为A1.若四边形AC1A1C为矩形,则a,b应满足的关系式为( )
A.ab=﹣2 B.ab=﹣3 C.ab=﹣4 D.ab=﹣5
【解答】解:令x=0,得:y=b.∴C(0,b).
令y=0,得:ax2+b=0,∴x=±,∴A(﹣,0),B(,0),
∴AB=2,BC==.
要使平行四边形AC1A1C是矩形,必须满足AB=BC,
∴2=.∴4×(﹣)=b2﹣,
∴ab=﹣3.
∴a,b应满足关系式ab=﹣3.
故选:B.
二、填空题(共6小题,每小题4分,满分24分)
13.(4分)计算: = ﹣ .
【解答】解:原式=﹣2
=﹣,
故答案为:.
14.(4分)若关于x的方程2x2+x﹣a=0有两个不相等的实数根,则实数a的取值范围是 a>﹣ .
【解答】解:∵关于x的方程2x2+x﹣a=0有两个不相等的实数根,
∴△=12﹣4×2×(﹣a)=1+8a>0,
解得:a>﹣.
故答案为:a>﹣.
15.(4分)如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为 13 cm.
【解答】解:∵将线段DC沿着CB的方向平移7cm得到线段EF,
∴EF=DC=4cm,FC=7cm,
∵AB=AC,BC=12cm,
∴∠B=∠C,BF=5cm,
∴∠B=∠BFE,
∴BE=EF=4cm,
∴△EBF的周长为:4+4+5=13(cm).
故答案为:13.
16.(4分)猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是 .
【解答】解:∵分数的分子分别是:2 2=4,23=8,24=16,…
分数的分母分别是:2 2+3=7,23+3=11,24+3=19,…
∴第n个数是.
故答案为:.
17.(4分)如图,将半径为3的圆形纸片,按下列顺序折叠.若和都经过圆心O,则阴影部分的面积是 3π (结果保留π)
【解答】解;如图,作OD⊥AB于点D,连接AO,BO,CO,延长OD交⊙O于F,
由翻折性质可知,OD=FD=OF,∵OA=OF,
∴OD=AO,
∴∠OAD=30°,
∴∠AOB=2∠AOD=120°,
同理∠BOC=120°,
∴∠AOC=120°,
∴阴影部分的面积=S扇形AOC==3π.
故答案为:3π.
18.(4分)如图,在平面直角坐标系xOy中,点A,B在双曲线y=(k是常数,且k≠0)上,过点A作AD⊥x轴于点D,过点B作BC⊥
y轴于点C,已知点A的坐标为(4,),四边形ABCD的面积为4,则点B的坐标为 (,) .
【解答】解:连接BO、BD,
∵点A在双曲线y=(k是常数,且k≠0)上,点A的坐标为(4,),
∴k=4×=6,
又∵BC⊥y轴于点C,
∴BC∥OD,
∴△BOC的面积=△BCD的面积=3,
又∵四边形ABCD的面积为4,
∴△ABD的面积=4﹣3=1,
设B(a,),
∵AD⊥x轴于点D,A的坐标为(4,),
∴AD=,
∵××(4﹣a)=1,
解得a=,
∴=,
∴点B的坐标为(,).
故答案为:(,).
三、解答题(共9小题,满分90分)
19.(6分)计算:﹣12018+(π﹣5)0+4﹣3tan60°.
【解答】解:﹣12018+(π﹣5)0+4﹣3tan60°
=﹣1+1+4﹣3
=4﹣3
20.(8分)化简分式:(﹣)÷并从﹣2,0,1,2这四个数中选取一个合适的数作a的值代入求值.
【解答】解:原式=÷
=×
=a
∵a(a﹣2)≠0,a+2≠0,
∴a≠0且a≠2且a≠﹣2
∴取a=1代入,原式=1
21.(8分)金桥学校“科技体艺节”期间,八年级数学活动小组的任务是测量学校旗杆AB的高,他们在旗杆正前方台阶上的点C处,测得旗杆顶端A的仰角为45°,朝着旗杆的方向走到台阶下的点F处,测得旗杆顶端A的仰角为60°,已知升旗台的高度BE为1米,点C距地面的高度CD为3米,台阶CF的坡角为30°,且点E、F、D在同一条直线上,求旗杆AB的高度(计算结果精确到0.1米,参考数据:≈1.41,≈1.73)
【解答】解:过点C作CM⊥AB于M.则四边形MEDC是矩形,
∴ME=DC=3.CM=ED,
在Rt△AEF中,∠AFE=60°,设EF=x,则AF=2x,AE=x,
在Rt△FCD中,CD=3,∠CFD=30°,
∴DF=3,
在Rt△AMC中,∠ACM=45°,
∴∠MAC=∠ACM=45°,
∴MA=MC,
∵ED=CM,
∴AM=ED,
∵AM=AE﹣ME,ED=EF+DF,
∴x﹣3=x+3,
∴x=6+3,
∴AE=(6+3)=6+9,
∴AB=AE﹣BE=9+6﹣1≈18.4米.
答:旗杆AB的高度约为18.4米.
22.(10分)某中学决定在本校学生中开展足球、篮球、羽毛球、乒乓球四种活动,为了了解学生对这四种活动的喜爱情况,学校随机调查了该校m名学生,看他们喜爱哪一种活动(每名学生必选一种且只能从这四种活动中选择一种),现将调查的结果绘制成如下不完整的统计图.请你根据图中的信息,解答下列问题.
(1)m= 100 ,n= 15 ;
(2)请补全图中的条形图;
(3)扇形统计图中,足球部分的圆心角是 144 度;
(4)根据抽样调查的结果,请估算全校1800名学生中,大约有多少人喜爱踢足球.
【解答】解:(1)由题意可得,m=10÷10%=100,n%=15÷100=15%,
故答案为:100,15;
(2)喜爱篮球的有:100×35%=35(人),
补全的条形统计图,如图所示:
(3)扇形统计图中,足球部分的圆心角是360°×=144°;
故答案为:144;
(4)由题意可得,全校1800名学生中,喜爱踢足球的有:1800×=720(人),
答:全校1800名学生中,大约有720人喜爱踢足球;
23.(10分)如图,甲、乙用这4张扑克牌玩游戏,他俩将扑克牌洗匀后背面朝上,放置在桌面上.
(1)甲从中任抽取一张,抽到4的概率是多少?
(2)甲、乙没人抽一张,甲先抽,乙后抽,抽出的牌不放回,甲、乙约定;只有甲抽到的牌面数字比乙大时甲胜.请你用树状图或列表法说明甲、乙获胜的机会是否相同.
【解答】解:(1)∵一共有2,4,5,5四个数字,
∴从中任抽取一张,抽到4的概率是:;
(2)画树状图得:
∵共有12种等可能的结果,甲抽到的牌面数字比乙大的有5种情况,小于等于乙的有7种情况,
∴P(甲胜)=,P(乙胜)=,
∴甲、乙获胜的机会不相同.
24.(10分)如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.
(1)请判断四边形EBGD的形状,并说明理由;
(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.
【解答】解:(1)四边形EBGD是菱形.
理由:∵EG垂直平分BD,
∴EB=ED,GB=GD,
∴∠EBD=∠EDB,
∵∠EBD=∠DBC,
∴∠EDF=∠GBF,
在△EFD和△GFB中,
,
∴△EFD≌△GFB,
∴ED=BG,
∴BE=ED=DG=GB,
∴四边形EBGD是菱形.
(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,
在Rt△EBM中,∵∠EMB=90°,∠EBM=30°,EB=ED=2,
∴EM=BE=,
∵DE∥BC,EM⊥BC,DN⊥BC,
∴EM∥DN,EM=DN=,MN=DE=2,
在Rt△DNC中,∵∠DNC=90°,∠DCN=45°,
∴∠NDC=∠NCD=45°,
∴DN=NC=,
∴MC=3,
在Rt△EMC中,∵∠EMC=90°,EM=.MC=3,
∴EC===10.
∵HG+HC=EH+HC=EC,
∴HG+HC的最小值为10.
25.(12分)某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:
①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:
时间(第x天)
1
3
6
10
…
日销售量(m件)
198
194
188
180
…
②该产品90天内每天的销售价格与时间(第x天)的关系如下表:
时间(第x天)
1≤x<50
50≤x≤90
销售价格(元/件)
x+60
100
(1)求m关于x的一次函数表达式;
(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?
(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.
【解答】解:(1)∵m与x成一次函数,
∴设m=kx+b,将x=1,m=198,x=3,m=194代入,得:
,
解得:.
所以m关于x的一次函数表达式为m=﹣2x+200;
(2)设销售该产品每天利润为y元,y关于x的函数表达式为:
y=,
当1≤x<50时,y=﹣2x2+160x+4000=﹣2(x﹣40)2+7200,
∵﹣2<0,
∴当x=40时,y有最大值,最大值是7200;
当50≤x≤90时,y=﹣120x+12000,
∵﹣120<0,
∴y随x增大而减小,即当x=50时,y的值最大,最大值是6000;
综上所述,当x=40时,y的值最大,最大值是7200,
即在90天内该产品第40天的销售利润最大,最大利润是7200元;
(3)当1≤x<50时,由y≥5400可得﹣2x2+160x+4000≥5400,
解得:10≤x≤70,
∵1≤x<50,
∴10≤x<50;
当50≤x≤90时,由y≥5400可得﹣120x+12000≥5400,
解得:x≤55,
∵50≤x≤90,
∴50≤x≤55,
综上,10≤x≤55,
故在该产品销售的过程中,共有46天销售利润不低于5400元.
26.(12分)已知:如图.△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连接AD.
(1)求证:∠DAC=∠DBA;
(2)求证:P是线段AF的中点;
(3)若⊙O的半径为5,AF=,求tan∠ABF的值.
【解答】(1)证明:∵BD平分∠CBA,
∴∠CBD=∠DBA,
∵∠DAC与∠CBD都是弧CD所对的圆周角,
∴∠DAC=∠CBD,
∴∠DAC=∠DBA;
(2)证明:∵AB为直径,
∴∠ADB=90°,
∵DE⊥AB于E,
∴∠DEB=90°,
∴∠ADE+∠EDB=∠ABD+∠EDB=90°,
∴∠ADE=∠ABD=∠DAP,
∴PD=PA,
∵∠DFA+∠DAC=∠ADE+∠PDF=90°,且∠ADB=90°,
∴∠PDF=∠PFD,
∴PD=PF,
∴PA=PF,
即:P是AF的中点;
(3)解:∵∠DAF=∠DBA,∠ADB=∠FDA=90°,
∴△FDA∽△ADB,
∴=,
由题意可知圆的半径为5,
∴AB=10,
∴===,
∴在Rt△ABD中,tan∠ABD==,
即:tan∠ABF=.
27.(14分)在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.
求S关于m的函数关系式,并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.
【解答】解:(1)设此抛物线的函数解析式为:
y=ax2+bx+c(a≠0),
将A(﹣4,0),B(0,﹣4),C(2,0)三点代入函数解析式得:
解得,
所以此函数解析式为:y=;
(2)∵M点的横坐标为m,且点M在这条抛物线上,
∴M点的坐标为:(m,),
∴S=S△AOM+S△OBM﹣S△AOB
=×4×(﹣m2﹣m+4)+×4×(﹣m)﹣×4×4
=﹣m2﹣2m+8﹣2m﹣8
=﹣m2﹣4m,
=﹣(m+2)2+4,
∵﹣4<m<0,
当m=﹣2时,S有最大值为:S=﹣4+8=4.
答:m=﹣2时S有最大值S=4.
(3)设P(x, x2+x﹣4).
当OB为边时,根据平行四边形的性质知PQ∥OB,且PQ=OB,
∴Q的横坐标等于P的横坐标,
又∵直线的解析式为y=﹣x,
则Q(x,﹣x).
由PQ=OB,得|﹣x﹣(x2+x﹣4)|=4,
解得x=0,﹣4,﹣2±2.
x=0不合题意,舍去.
如图,当BO为对角线时,知A与P应该重合,OP=4.四边形PBQO为平行四边形则BQ=OP=4,Q横坐标为4,代入y=﹣x得出Q为(4,﹣4).
由此可得Q(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)或(4,﹣4).