由莲山课件提供http://www.5ykj.com/ 资源全部免费
2018年北京市平谷区中考数学一模试卷
一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.
1.(2分)风和日丽春光好,又是一年舞筝时.放风筝是我国人民非常喜爱的一项户外娱乐活动.下列风筝剪纸作品中,不是轴对称图形的是( )
A. B. C. D.
2.(2分)下面四幅图中,用量角器测得∠AOB度数是40°的图是( )
A. B. C. D.
3.(2分)如图,数轴上每相邻两点距离表示1个单位,点A,B互为相反数,则点C表示的数可能是( )
A.0 B.1 C.3 D.5
4.(2分)如图可以折叠成的几何体是( )
A.三棱柱 B.圆柱 C.四棱柱 D.圆锥
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
5.(2分)中国有个名句“运筹帷幄之中,决胜千里之外”.其中的“筹”原意是指《孙子算经》中记载的“算筹”.算筹是古代用来进行计算的工具,它是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式(如图).当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间:个位、百位、万位数用纵式表示;十位,千位,十万位数用横式表示;“0”用空位来代替,以此类推.例如3306用算筹表示就是,则2022用算筹可表示为( )
A. B. C. D.
6.(2分)一个正多边形的每个内角的度数都等于相邻外角的度数,则该正多边形的边数是( )
A.3 B.4 C.6 D.12
7.(2分)“龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表示了寓言中的龟、兔的路程S和时间t的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是( )
A.赛跑中,兔子共休息了50分钟
B.乌龟在这次比赛中的平均速度是0.1米/分钟
C.兔子比乌龟早到达终点10分钟
D.乌龟追上兔子用了20分钟
8.(2分)中小学时期是学生身心变化最为明显的时期,这个时期孩子们的身高变化呈现一定的趋势,7~15岁期间生子们会经历一个身高发育较迅速的阶段,我们把这个年龄阶段叫做生长速度峰值段,小明通过上网查阅《2016年某市儿童体格发育调查表》,了解某市男女生7~
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
15岁身高平均值记录情况,并绘制了如下统计图,并得出以下结论:
①10岁之前,同龄的女生的平均身高一般会略高于男生的平均身高;
②10~12岁之间,女生达到生长速度峰值段,身高可能超过同龄男生;
③7~15岁期间,男生的平均身高始终高于女生的平均身高;
④13~15岁男生身高出现生长速度峰值段,男女生身高差距可能逐渐加大.
以上结论正确的是( )
A.①③ B.②③ C.②④ D.③④
二、填空题(本题共16分,每小题2分)
9.(2分)若二次根式有意义,则x的取值范围是 .
10.(2分)林业部门要考察某种幼树在一定条件下的移植成活率,如图是这种幼树在移植过程中幼树成活率的统计图:
估计该种幼树在此条件下移植成活的概率为 (结果精确到0.01).
11.(2分)计算: = .
12.(2分)如图,测量小玻璃管口径的量具ABC上,AB的长为10毫米,AC被分为60等份,如果小管口中DE正好对着量具上20份处(DE∥
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
AB),那么小管口径DE的长是 毫米.
13.(2分)已知:a2+a=4,则代数式a(2a+1)﹣(a+2)(a﹣2)的值是 .
14.(2分)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=10,CD=8,则BE= .
15.(2分)如图,在平面直角坐标系xOy中,△OCD可以看作是△ABO经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ABO得到△OCD的过程: .
16.(2分)下面是“作已知角的角平分线”的尺规作图过程.
已知:如图1,∠MON.
求作:射线OP,使它平分∠MON.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
作法:如图2,
(1)以点O为圆心,任意长为半径作弧,交OM于点A,交ON于点B;
(2)连结AB;
(3)分别以点A,B为圆心,大于AB的长为半径作弧,两弧相交于点P;
(4)作射线OP.
所以,射线OP即为所求作的射线.
请回答:该尺规作图的依据是 .
三、解答题(本题共68分,第17~22题,每小题5分,第23题7分,第24题6分,第25题5分,第26题6分,第27题7分,第28题7分)解答应写出文字说明、演算步骤或证明过程.
17.(5分)计算:()﹣1﹣(π﹣)0+|1﹣|﹣2sin60°.
18.(5分)解不等式组,并写出它的所有整数解.
19.(5分)如图,在△ABC中,AB=AC,点D是BC边上一点,EF垂直平分CD,交AC于点E,交BC于点F,连结DE,求证:DE∥AB.
20.(5分)关于x的一元二次方程x2+2x+k﹣1=0有两个不相等的实数根.
(1)求k的取值范围;
(2)当k为正整数时,求此时方程的根.
21.(5分)如图,在平面直角坐标系xOy中,函数y=的图象与直线y=x+1交于点A(1,a).
(1)求a,k的值;
(2)连结OA,点P是函数y=
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
上一点,且满足OP=OA,直接写出点P的坐标(点A除外).
22.(5分)如图,在▱ABCD中,BF平分∠ABC交AD于点F,AE⊥BF于点O,交BC于点E,连接EF.
(1)求证:四边形ABEF是菱形;
(2)连接CF,若∠ABC=60°,AB=4,AF=2DF,求CF的长.
23.(7分)为了解某区初二年级数学学科期末质量监控情况,进行了抽样调查,过程如下,请将有关问题补充完整.
收集数据:随机抽取甲乙两所学校的20名学生的数学成绩进行分析:
甲
91
89
77
86
71
31
97
93
72
91
81
92
85
85
95
88
88
90
44
91
乙
84
93
66
69
76
87
77
82
85
88
90
88
67
88
91
96
68
97
59
88
整理、描述数据:按如下数据段整理、描述这两组数据
分段
学校
30≤x≤39
40≤x≤49
50≤x≤59
60≤x≤69
70≤x≤79
80≤x≤89
90≤x≤100
甲
1
1
0
0
3
7
8
乙
分析数据:两组数据的平均数、中位数、众数、方差如下表:
统计量
学校
平均数
中位数
众数
方差
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
甲
81.85
88
91
268.43
乙
81.95
86
m
115.25
经统计,表格中m的值是 .
得出结论:
a若甲学校有400名初二学生,估计这次考试成绩80分以上人数为 .
b可以推断出 学校学生的数学水平较高,理由为 .(至少从两个不同的角度说明推断的合理性)
24.(6分)如图,以AB为直径作⊙O,过点A作⊙O的切线AC,连结BC,交⊙O于点D,点E是BC边的中点,连结AE.
(1)求证:∠AEB=2∠C;
(2)若AB=6,cosB=,求DE的长.
25.(5分)如图,在△ABC中,∠C=60°,BC=3厘米,AC=4厘米,点P从点B出发,沿B→C→A以每秒1厘米的速度匀速运动到点A.设点P的运动时间为x秒,B、P两点间的距离为y厘米.
小新根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小新的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如下表:
x(s)
0
1
2
3
4
5
6
7
y(cm)
0
1.0
2.0
3.0
2.7
2.7
m
3.6
经测量m的值是 (保留一位小数).
(2)建立平面直角坐标系,描出表格中所有各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:在曲线部分的最低点时,在△ABC中画出点P所在的位置.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
26.(6分)在平面直角坐标系xOy中,抛物线y=﹣x2+2bx﹣3的对称轴为直线x=2.
(1)求b的值;
(2)在y轴上有一动点P(0,m),过点P作垂直y轴的直线交抛物线于点A(x1,y1),B(x2,y2),其中x1<x2.
①当x2﹣x1=3时,结合函数图象,求出m的值;
②把直线PB下方的函数图象,沿直线PB向上翻折,图象的其余部分保持不变,得到一个新的图象W,新图象W在0≤x≤5时,﹣4≤y≤4,求m的取值范围.
27.(7分)在△ABC中,AB=AC,CD⊥BC于点C,交∠ABC的平分线于点D,AE平分∠BAC交BD于点E,过点E作EF∥BC交AC于点F,连接DF.
(1)补全图1;
(2)如图1,当∠BAC=90°时,
①求证:BE=DE;
②写出判断DF与AB的位置关系的思路(不用写出证明过程);
(3)如图2,当∠BAC=α时,直接写出α,DF,AE的关系.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
28.(7分)在平面直角坐标系xOy中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”.
(1)已知点A(2,0),B(0,2),则以AB为边的“坐标菱形”的最小内角为 ;
(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD 表达式;
(3)⊙O的半径为,点P的坐标为(3,m).若在⊙O上存在一点Q,使得以QP为边的“坐标菱形”为正方形,求m的取值范围.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
2018年北京市平谷区中考数学一模试卷
参考答案与试题解析
一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.
1.(2分)风和日丽春光好,又是一年舞筝时.放风筝是我国人民非常喜爱的一项户外娱乐活动.下列风筝剪纸作品中,不是轴对称图形的是( )
A. B. C. D.
【解答】解:A、是轴对称图形,故此选项错误;
B、不是轴对称图形,故此选项正确;
C、是轴对称图形,故此选项错误;
D、是轴对称图形,故此选项错误.
故选:B.
2.(2分)下面四幅图中,用量角器测得∠AOB度数是40°的图是( )
A. B. C. D.
【解答】解:A、正确.∠AOB=40°;
B、错误.点O,边OA的位置错误;
C、错误.缺少字母A;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
D、错误.点O的位置错误;
故选:A.
3.(2分)如图,数轴上每相邻两点距离表示1个单位,点A,B互为相反数,则点C表示的数可能是( )
A.0 B.1 C.3 D.5
【解答】解:∵如图,数轴上每相邻两点距离表示1个单位,点A,B互为相反数,
∴线段AB的中点为原点,即A、B对应的数分别为﹣2、2,
则点C表示的数可能是3,
故选:C.
4.(2分)如图可以折叠成的几何体是( )
A.三棱柱 B.圆柱 C.四棱柱 D.圆锥
【解答】解:两个三角形和三个矩形可围成一个三棱柱.
故选:A.
5.(2分)中国有个名句“运筹帷幄之中,决胜千里之外”.其中的“筹”原意是指《孙子算经》中记载的“算筹”.算筹是古代用来进行计算的工具,它是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式(如图).当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间:个位、百位、万位数用纵式表示;十位,千位,十万位数用横式表示;“0”用空位来代替,以此类推.例如3306用算筹表示就是
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
,则2022用算筹可表示为( )
A. B. C. D.
【解答】解:∵各位数码的筹式需要纵横相间:个位、百位、万位数用纵式表示;十位,千位,十万位数用横式表示;“0”用空位来代替,
∴2022用算筹可表示为
故选:C.
6.(2分)一个正多边形的每个内角的度数都等于相邻外角的度数,则该正多边形的边数是( )
A.3 B.4 C.6 D.12
【解答】解:由题意,得
外角+相邻的内角=180°且外角=相邻的内角,
∴外角=90°,
360÷90=4,
正多边形是正方形,
故选:B.
7.(2分)“龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表示了寓言中的龟、兔的路程S和时间t的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.赛跑中,兔子共休息了50分钟
B.乌龟在这次比赛中的平均速度是0.1米/分钟
C.兔子比乌龟早到达终点10分钟
D.乌龟追上兔子用了20分钟
【解答】解:由图象可得,
赛跑中,兔子共休息了50﹣10=40分钟,故选项A错误,
乌龟在这次比赛中的平均速度是500÷50=10米/分钟,故选项B错误,
乌龟比兔子先到达60﹣50=10分钟,故选项C错误,
乌龟追上兔子用了20分钟,故选项D正确,
故选:D.
8.(2分)中小学时期是学生身心变化最为明显的时期,这个时期孩子们的身高变化呈现一定的趋势,7~15岁期间生子们会经历一个身高发育较迅速的阶段,我们把这个年龄阶段叫做生长速度峰值段,小明通过上网查阅《2016年某市儿童体格发育调查表》,了解某市男女生7~15岁身高平均值记录情况,并绘制了如下统计图,并得出以下结论:
①10岁之前,同龄的女生的平均身高一般会略高于男生的平均身高;
②10~12岁之间,女生达到生长速度峰值段,身高可能超过同龄男生;
③7~15岁期间,男生的平均身高始终高于女生的平均身高;
④13~15岁男生身高出现生长速度峰值段,男女生身高差距可能逐渐加大.
以上结论正确的是( )
A.①③ B.②③ C.②④ D.③④
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:①10岁之前,同龄的女生的平均身高与男生的平均身高基本相同,故该说法错误;
②10~12岁之间,女生达到生长速度峰值段,身高可能超过同龄男生,故该说法正确;
③7~15岁期间,男生的平均身高不一定高于女生的平均身高,如11岁的男生的平均身高低于女生的平均身高,故该说法错误;
④13~15岁男生身高出现生长速度峰值段,男女生身高差距可能逐渐加大,故该说法正确.
故选:C.
二、填空题(本题共16分,每小题2分)
9.(2分)若二次根式有意义,则x的取值范围是 x≥2 .
【解答】解:根据题意,使二次根式有意义,即x﹣2≥0,
解得x≥2;
故答案为:x≥2.
10.(2分)林业部门要考察某种幼树在一定条件下的移植成活率,如图是这种幼树在移植过程中幼树成活率的统计图:
估计该种幼树在此条件下移植成活的概率为 0.88 (结果精确到0.01).
【解答】解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率
∴这种幼树移植成活率的概率约为0.88.
故答案为:0.88.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
11.(2分)计算: = 2m+3n .
【解答】解: =2m+3n.
故答案为:2m+3n
12.(2分)如图,测量小玻璃管口径的量具ABC上,AB的长为10毫米,AC被分为60等份,如果小管口中DE正好对着量具上20份处(DE∥AB),那么小管口径DE的长是 毫米.
【解答】解:∵DE∥AB
∴△CDE∽△CAB
∴CD:CA=DE:AB
∴20:60=DE:10
∴DE=毫米
∴小管口径DE的长是毫米.
故答案为:
13.(2分)已知:a2+a=4,则代数式a(2a+1)﹣(a+2)(a﹣2)的值是 8 .
【解答】解:原式=2a2+a﹣(a2﹣4)
=2a2+a﹣a2+4
=a2+a+4,
当a2+a=4时,原式=4+4=8,
故答案为:8.
14.(2分)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=10,CD=8,则BE=
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
2 .
【解答】解:连接OC,如图,
∵弦CD⊥AB,
∴CE=DE=CD=4,
在Rt△OCE中,∵OC=5,CE=4,
∴OE==3,
∴BE=OB﹣OE=5﹣3=2.
故答案为2.
15.(2分)如图,在平面直角坐标系xOy中,△OCD可以看作是△ABO经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ABO得到△OCD的过程: 将△ABO沿x轴向下翻折,在沿x轴向左平移2个单位长度得到△OCD. .
【解答】解:将△ABO沿x轴向下翻折,在沿x轴向左平移2个单位长度得到△
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
OCD,
故答案为:将△ABO沿x轴向下翻折,在沿x轴向左平移2个单位长度得到△OCD.
16.(2分)下面是“作已知角的角平分线”的尺规作图过程.
已知:如图1,∠MON.
求作:射线OP,使它平分∠MON.
作法:如图2,
(1)以点O为圆心,任意长为半径作弧,交OM于点A,交ON于点B;
(2)连结AB;
(3)分别以点A,B为圆心,大于AB的长为半径作弧,两弧相交于点P;
(4)作射线OP.
所以,射线OP即为所求作的射线.
请回答:该尺规作图的依据是 等腰三角形三线合一 .
【解答】解:利用作图可得到OA=OB,PA=PB,
利用等腰三角形的性质可判定OP平分∠AOB.
故答案为:等腰三角形的三线合一.
三、解答题(本题共68分,第17~22题,每小题5分,第23题7分,第24题6分,第25题5分,第26题6分,第27题7分,第28题7分)解答应写出文字说明、演算步骤或证明过程.
17.(5分)计算:()﹣1﹣(π﹣)0+|1﹣|﹣2sin60°.
【解答】解:原式=3﹣1+﹣1﹣2×=1.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
18.(5分)解不等式组,并写出它的所有整数解.
【解答】解:,
解不等式①,得x≤2,
解不等式②,得x>﹣1,
∴原不等式组的解集为﹣1<x≤2,
∴适合原不等式组的整数解为0,1,2.
19.(5分)如图,在△ABC中,AB=AC,点D是BC边上一点,EF垂直平分CD,交AC于点E,交BC于点F,连结DE,求证:DE∥AB.
【解答】证明:∵AB=AC,
∴∠B=∠C.
∵EF垂直平分CD,
∴ED=EC.
∴∠EDC=∠C.
∴∠EDC=∠B.
∴DE∥AB.
20.(5分)关于x的一元二次方程x2+2x+k﹣1=0有两个不相等的实数根.
(1)求k的取值范围;
(2)当k为正整数时,求此时方程的根.
【解答】解:
(1)∵关于x的一元二次方程有两个不相等的实数根,
∴△>0,即22﹣4(k﹣1)>0,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴k<2;
(2)∵k为正整数,
∴k=1,
此时方程为x2+2x=0,解得x1=0,x2=﹣2.
21.(5分)如图,在平面直角坐标系xOy中,函数y=的图象与直线y=x+1交于点A(1,a).
(1)求a,k的值;
(2)连结OA,点P是函数y=上一点,且满足OP=OA,直接写出点P的坐标(点A除外).
【解答】解:(1)∵直线y=x+1经过点A(1,a),
∴a=1+1=2,
∴A(1,2).
∵函数y=的图象经过点A(1,2),
∴k=1×2=2;
(2)设点P的坐标为(x,),
∵OP=OA,
∴x2+()2=12+22,
化简整理,得x4﹣5x2+4=0,
解得x1=1,x2=﹣1,x3=2,x4=﹣2,
经检验,x1=1,x2=﹣1,x3=2,x4=﹣2都是原方程的根,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵点P与点A不重合,
∴点P的坐标为(﹣1,﹣2),(2,1),(﹣2,﹣1).
22.(5分)如图,在▱ABCD中,BF平分∠ABC交AD于点F,AE⊥BF于点O,交BC于点E,连接EF.
(1)求证:四边形ABEF是菱形;
(2)连接CF,若∠ABC=60°,AB=4,AF=2DF,求CF的长.
【解答】(1)证明:∵BF平分∠ABC,
∴∠ABF=∠CBF.
∵四边形ABCD是平行四边形,
∴AD∥BC.
∴∠AFB=∠CBF.
∴∠ABF=∠AFB.
∴AB=AF.
∵AE⊥BF,
∴∠BAO=∠FAE
∵∠FAE=∠BEO
∴∠BAO=∠BEO.
∴AB=BE.
∴AF=BE.
∴四边形ABEF是平行四边形.
∴□ABEF是菱形.
(2)解:∵AD=BC,AF=BE,
∴DF=CE.
∵AF=2DF
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴BE=2CE.
∵AB=BE=4,
∴CE=2.
过点A作AG⊥BC于点G.
∵∠ABC=60°,AB=BE,
∴△ABE是等边三角形.
∴BG=GE=2.
∴AF=CG=4.
∴四边形AGCF是平行四边形.
∴□AGCF是矩形.
∴AG=CF.
在△ABG中,∠ABC=60°,AB=4,
∴AG=.
∴CF=.
23.(7分)为了解某区初二年级数学学科期末质量监控情况,进行了抽样调查,过程如下,请将有关问题补充完整.
收集数据:随机抽取甲乙两所学校的20名学生的数学成绩进行分析:
甲
91
89
77
86
71
31
97
93
72
91
81
92
85
85
95
88
88
90
44
91
乙
84
93
66
69
76
87
77
82
85
88
90
88
67
88
91
96
68
97
59
88
整理、描述数据:按如下数据段整理、描述这两组数据
分段
学校
30≤x≤39
40≤x≤49
50≤x≤59
60≤x≤69
70≤x≤79
80≤x≤89
90≤x≤100
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
甲
1
1
0
0
3
7
8
乙
0
0
1
4
2
8
5
分析数据:两组数据的平均数、中位数、众数、方差如下表:
统计量
学校
平均数
中位数
众数
方差
甲
81.85
88
91
268.43
乙
81.95
86
m
115.25
经统计,表格中m的值是 88 .
得出结论:
a若甲学校有400名初二学生,估计这次考试成绩80分以上人数为 300 .
b可以推断出 甲 学校学生的数学水平较高,理由为 两校平均数基本相同,而甲校的中位数以及众数均高于乙校,说明甲校学生的数学水平较高 .(至少从两个不同的角度说明推断的合理性)
【解答】解:整理、描述数据:
分段
学校
30≤x≤39
40≤x≤49
50≤x≤59
60≤x≤69
70≤x≤79
80≤x≤89
90≤x≤100
甲
1
1
0
0
3
7
8
乙
0
0
1
4
2
8
5
故答案为:0,0,1,4,2,8,5;
分析数据:
经统计,乙校的数据中88出现的次数最多,故表格中m的值是88.
故答案为:88;
得出结论:
a若甲学校有400名初二学生,估计这次考试成绩80分以上人数为400×=300(人).
故答案为:300;
b (答案不唯一)可以推断出甲学校学生的数学水平较高,理由为两校平均数基本相同,而甲校的中位数以及众数均高于乙校,说明甲校学生的数学水平较高.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
故答案为:甲,两校平均数基本相同,而甲校的中位数以及众数均高于乙校,说明甲校学生的数学水平较高.
24.(6分)如图,以AB为直径作⊙O,过点A作⊙O的切线AC,连结BC,交⊙O于点D,点E是BC边的中点,连结AE.
(1)求证:∠AEB=2∠C;
(2)若AB=6,cosB=,求DE的长.
【解答】(1)证明:∵AC是⊙O的切线,
∴∠BAC=90°.
∵点E是BC边的中点,
∴AE=EC.
∴∠C=∠EAC,
∵∠AEB=∠C+∠EAC,
∴∠AEB=2∠C.
(2)连结AD.
∵AB为直径作⊙O,
∴∠ABD=90°.
∵AB=6,,
∴BD=.
在Rt△ABC中,AB=6,,
∴BC=10.
∵点E是BC边的中点,
∴BE=5.
∴.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
25.(5分)如图,在△ABC中,∠C=60°,BC=3厘米,AC=4厘米,点P从点B出发,沿B→C→A以每秒1厘米的速度匀速运动到点A.设点P的运动时间为x秒,B、P两点间的距离为y厘米.
小新根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小新的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如下表:
x(s)
0
1
2
3
4
5
6
7
y(cm)
0
1.0
2.0
3.0
2.7
2.7
m
3.6
经测量m的值是 3.0 (保留一位小数).
(2)建立平面直角坐标系,描出表格中所有各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:在曲线部分的最低点时,在△ABC中画出点P所在的位置.
【解答】解:(1)经测量,当t=6时,BP=3.0.
(当t=6时,CP=6﹣BC=3,
∴BC=CP.
∵∠C=60°,
∴当t=6时,△BCP为等边三角形.)
故答案为:3.0.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)描点、连线,画出图象,如图1所示.
(3)在曲线部分的最低点时,BP⊥AC,如图2所示.
26.(6分)在平面直角坐标系xOy中,抛物线y=﹣x2+2bx﹣3的对称轴为直线x=2.
(1)求b的值;
(2)在y轴上有一动点P(0,m),过点P作垂直y轴的直线交抛物线于点A(x1,y1),B(x2,y2),其中x1<x2.
①当x2﹣x1=3时,结合函数图象,求出m的值;
②把直线PB下方的函数图象,沿直线PB向上翻折,图象的其余部分保持不变,得到一个新的图象W,新图象W在0≤x≤5时,﹣4≤y≤4,求m的取值范围.
【解答】解:(1)∵抛物线y=﹣x2+2bx﹣3的对称轴为直线x=2,
∴﹣=2,即﹣=2
∴b=2.
(2)①∴抛物线的表达式为y=﹣x2+4x﹣3.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵A(x1,y),B(x2,y),
∴直线AB平行x轴.
∵x2﹣x1=3,
∴AB=3.
∵对称轴为x=2,
∴A(,m).
∴当时,m=﹣()2+4×﹣3=﹣.
②当y=m=﹣4时,0≤x≤5时,﹣4≤y≤1;
当y=m=﹣2时,0≤x≤5时,﹣2≤y≤4;
∴m的取值范围为﹣4≤m≤﹣2.
27.(7分)在△ABC中,AB=AC,CD⊥BC于点C,交∠ABC的平分线于点D,AE平分∠BAC交BD于点E,过点E作EF∥BC交AC于点F,连接DF.
(1)补全图1;
(2)如图1,当∠BAC=90°时,
①求证:BE=DE;
②写出判断DF与AB的位置关系的思路(不用写出证明过程);
(3)如图2,当∠BAC=α时,直接写出α,DF,AE的关系.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:(1)补全图如图1;
(2)①延长AE,交BC于点H.
∵AB=AC,AE平分∠BAC,
∴AH⊥BC,BH=HC.
∵CD⊥BC于,
∴EH∥CD.
∴BE=DE;
②延长FE,交AB于点M.
∵AB=AC,
∴∠ABC=∠ACB.
∵EF∥BC,
∴∠AMF=∠AFM.
∴AM=AF.
∴ME=EF.
∵∠MBE=∠FED,
在△BEM和△DEF中,
,
∴△BEM≌△DEF.
∴∠ABE=∠FDE.
∴DF∥AB;
(3).
证明:∵DF∥AB,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴∠EDF=∠ABD,
∵EF∥BC,
∴∠DEF=∠DBC,
∵BD是∠ABC的平分线,
∴∠ABD=∠CBD,
∴∠EDF=∠DEF,
∴DF=EF,
∵tan=,
∴.
28.(7分)在平面直角坐标系xOy中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”.
(1)已知点A(2,0),B(0,2),则以AB为边的“坐标菱形”的最小内角为 60° ;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD 表达式;
(3)⊙O的半径为,点P的坐标为(3,m).若在⊙O上存在一点Q,使得以QP为边的“坐标菱形”为正方形,求m的取值范围.
【解答】解:(1)∵点A(2,0),B(0,2),
∴OA=2,OB=2,
在Rt△AOB中,由勾股定理得:AB==4,
∴∠ABO=30°,
∵四边形ABCD是菱形,
∴∠ABC=2∠ABO=60°,
∵AB∥CD,
∴∠DCB=180°﹣60°=120°,
∴以AB为边的“坐标菱形”的最小内角为60°,
故答案为:60°;
(2)如图2,∵以CD为边的“坐标菱形”为正方形,
∴直线CD与直线y=5的夹角是45°.
过点C作CE⊥DE于E.
∴D(4,5)或(﹣2,5).
∴直线CD的表达式为:y=x+1或y=﹣x+3;
(3)分两种情况:
①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵⊙O的半径为,且△OQ'D是等腰直角三角形,
∴OD=OQ'=2,
∴P'D=3﹣2=1,
∵△P'DB是等腰直角三角形,
∴P'B=BD=1,
∴P'(0,1),
同理可得:OA=2,
∴AB=3+2=5,
∵△ABP是等腰直角三角形,
∴PB=5,
∴P(0,5),
∴当1≤m≤5时,以QP为边的“坐标菱形”为正方形;
②先作直线y=﹣x,再作圆的两条切线,且平行于直线y=﹣x,如图4,
∵⊙O的半径为,且△OQ'D是等腰直角三角形,
∴OD=OQ'=2,
∴BD=3﹣2=1,
∵△P'DB是等腰直角三角形,
∴P'B=BD=1,
∴P'(0,﹣1),
同理可得:OA=2,
∴AB=3+2=5,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵△ABP是等腰直角三角形,
∴PB=5,
∴P(0,﹣5),
∴当﹣5≤m≤﹣1时,以QP为边的“坐标菱形”为正方形;
综上所述,m的取值范围是1≤m≤5或﹣5≤m≤﹣1.
由莲山课件提供http://www.5ykj.com/ 资源全部免费