由莲山课件提供http://www.5ykj.com/ 资源全部免费
2019年潍坊市初中学业水平考试
第四、五章 阶段检测卷
(考试时间:120分钟 满分:120分)
第Ⅰ卷(选择题 共36分)
一、选择题(本大题共12个小题,每小题3分,共36分)
1.一个多边形的内角和是720°,这个多边形的边数是( )
A.4 B.5
C.6 D.7
2.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )
A.20° B.30°[来源:学科网ZXXK]
C.40° D.50°
3.如果三角形的两边长分别为3和5,则周长L的取值范围是( )
A.6<L<15 B.6<L<16
C.11<L<13 D.10<L<16
4.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )
A.CB=CD B.∠BAC=∠DAC
C.∠BCA=∠DCA D.∠B=∠D=90°
5.学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4 m,AB=1.6 m,CO=1 m,则栏杆C端应下降的垂直距离CD为( )
A.0.2 m B.0.3 m C.0.4 m D.0.5 m
6.如图,▱ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是( )
A.6 B.8 C.10 D.12
7.如图,矩形ABCD中,AB=10,BC=5,点E,F,G,H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为( )
A.5 B.10
C.10 D.15
8.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A. B.-1
C.2- D.
9.如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则DF的长等于( )
A. B. C. D.
10.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为( )
A.6 B.8 C.10 D.12
11.如图,点E,点F分别在菱形ABCD的边AB,AD上,且AE=DF,BF交DE于点G,延长BF交CD的延长线于点H.若=2,则的值为( )
A. B. C. D.
12.如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连接AP并延长AP交CD于F点,连接CP并延长CP交AD于Q点.给出以下结论:
①四边形AECF为平行四边形;
②∠PBA=∠APQ;
③△FPC为等腰三角形;
④△APB≌△EPC.
其中正确结论的个数为( )
A.1 B.2 C.3 D.4
第Ⅱ卷(非选择题 共84分)
二、填空题(本大题共5个小题,每小题4分,共20分)
13.下列命题是真命题的序号为______.
①对角线相等的四边形是矩形;
②对角线互相垂直的四边形是菱形;
③任意多边形的内角和为360°;
④三角形的中位线平行于第三边,并且等于第三边的一半.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
14.如图,某景区的两个景点A,B处于同一水平地面上,一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内,当无人机飞行至C处时,测得景点A的俯角为45°,景点B的俯角为30°,此时C到地面的距离CD为100米,则两景点A,B间的距离为__________________米(结果保留根号).
15.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是________步.
16.矩形ABCD中,AB=6,BC=8,点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为________.
17.如图,直线y=-x+1与两坐标轴分别交于A,B两点,将线段OA分成n等份,分点分别为P1,P2,P3,…,Pn-1,过每个分点作x轴的垂线分别交直线AB于点T1,T2,T3,…,Tn-1,用S1,S2,S3,…,Sn-1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△Tn-1Pn-2Pn-1的面积,则S1+S2+S3+…+Sn-1=________.
三、解答题(本大题共7个小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤)
18.(本题满分7分)
如图,点A,D,C,F在同一条直线上,AD=CF,AB=DE,BC=EF.
(1)求证:△ABC≌△DEF;
(2)若∠A=55°,∠B=88°,求∠F的度数.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
19.(本题满分7分)
如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.
(1)求证:△ADE∽△ABC;
(2)若AD=3,AB=5,求的值.
20.(本题满分8分)
随着航母编队的成立,我国海军日益强大,2018年4月12日,中央军委在南海海域隆重举行海上阅兵,在阅兵之前我军加强了海上巡逻.如图,我军巡逻舰在某海域航行到A处时,该舰在观测点P的南偏东45°的方向上,且与观测点P的距离PA为400海里;巡逻舰继续沿正北方向航行一段时间后,到达位于观测点P的北偏东30°方向上的B处,问此时巡逻舰与观测点P的距离PB为多少海里?(参考数据:≈1.414,≈1.732,结果精确到1海里).
21.(本题满分9分)[来源:学科网ZXXK]
如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.
(1)求证:▱ABCD是菱形;
(2)若AB=5,AC=6,求▱ABCD的面积.
22.(本题满分10分)
如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.
(1)求坡底C点到大楼距离AC的值;
(2)求斜坡CD的长度.
[来源:Z,xx,k.Com]
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
23.(本题满分11分)
如图,在△ABC中,BC>AC,点E在BC上,CE=CA,点D在AB上,连接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足为H.
(1)如图1,当∠ACB=90°时,连接CD,过点C作CF⊥CD交BA的延长线于点F.
①求证:FA=DE;
②请猜想三条线段DE,AD,CH之间的数量关系,直接写出结论;
(2)如图2,当∠ACB=120°时,三条线段DE,AD,CH之间存在怎样的数量关系?请证明你的结论.
24.(本题满分12分)
如图1,已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.
(1)证明与推断:
①求证:四边形CEGF是正方形;
②推断:的值为________;
(2)探究与证明:
将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图2所示,试探究线段AG与BE之间的数量关系,并说明理由;
(3)拓展与运用:
正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图3所示,延长CG交AD于点H.若AG=6,GH=2,则BC=________.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
参考答案
1.C 2.C 3.D 4.C 5.C 6.C 7.B 8.A 9.B 10.D 11.B 12.B
13.④ 14.100+100 15. 16.或3
17.-
18.(1)证明:∵AC=AD+DC,DF=DC+CF,且AD=CF,
∴AC=DF.
在△ABC和△DEF中,
∴△ABC≌△DEF(SSS).
(2)解:由(1)可知∠F=∠ACB.
∵∠A=55°,∠B=88°,
∴∠ACB=180°-(∠A+∠B)=180°-(55°+88°)=37°,
∴∠F=∠ACB=37°.
19.(1)证明:∵AG⊥BC,AF⊥DE,
∴∠AFE=∠AGC=90°.
∵∠EAF=∠GAC,∴∠AED=∠ACB.
∵∠EAD=∠CAB,∴△ADE∽△ABC.
(2)解:由(1)可知△ADE∽△ABC,∴==.
∵∠AFE=∠AGC=90°,∠EAF=∠GAC,
∴△EAF∽△CAG,
∴=,∴=.
20.解:在△APC中,∠ACP=90°,∠APC=45°,则AC=PC.
∵AP=400海里,
∴由勾股定理知AP2=AC2+PC2=2PC2,即4002=2PC2,
∴PC=200海里.
又∵在直角△BPC中,∠PCB=90°,∠BPC=60°,
∴PB==2PC=400≈566(海里).
答:此时巡逻舰与观测点P的距离PB约为566海里.
21.(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D.
∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°.
∵BE=DF,∴△AEB≌△AFD,
∴AB=AD,∴四边形ABCD是菱形.
(2)解:如图,连接BD交AC于点O.
∵四边形ABCD是菱形,AC=6,
∴AC⊥BD,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
AO=OC=AC=×6=3.
∵AB=5,AO=3,
∴BO===4,
∴BD=2BO=8,
∴S平行四边形ABCD=AC·BD=24.
22.解:(1)在Rt△ABC中,∠BAC=90°,∠BCA=60°,AB=60米,
则AC===20(米).
答:坡底C点到大楼距离AC的值是20米.
(2)如图,过点D作DF⊥AB于点F.
设CD=2x,则DE=x,CE=x.
在Rt△BDF中,
∵∠BDF=45°,
∴BF=DF,
∴60-x=20+x,
∴x=40-60,
∴CD的长为(80-120)米.
23.(1)①证明:∵CF⊥CD,∴∠FCD=90°.
∵∠ACB=90°,
∴∠FCA+∠ACD=∠ACD+∠DCE,
∴∠FCA=∠DCE.
∵∠FAC=90°+∠B,∠CED=90°+∠B,
∴∠FAC=∠CED.
∵AC=EC,∴△AFC≌△EDC,∴FA=DE.
②解:DE+AD=2CH.
(2)解:AD+DE=2CH.理由如下:
如图,连接CD,作∠FCD=∠ACB,交BA延长线于点F.
∵∠FCA+∠ACD=
∠ACD+∠BCD,
∴∠FCA=∠BCD.
∵∠EDA=60°,∴∠EDB=120°.
∵∠FAC=120°+∠B,∠DEC=120°+∠B,
∴∠FAC=∠DEC.
∵AC=EC,∴△FAC≌△DEC,
∴AF=DE,FC=DC.
∵CH⊥FD,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴FH=HD,∠FCH=∠HCD=60°.
在Rt△CHD中,tan 60°=,
∴DH=CH.
∵AD+DE=AD+AF=2DH=2CH,
即AD+DE=2CH.
24.(1)①证明:∵四边形ABCD是正方形,
∴∠BCD=90°,∠BCA=45°.
∵GE⊥BC,GF⊥CD,
∴∠CEG=∠CFG=∠ECF=90°,
∴四边形CEGF是矩形,∠CGE=∠ECG=45°,
∴EG=EC,
∴四边形CEGF是正方形.
②解:
提示:由①知四边形CEGF是正方形,
∴∠CEG=∠B=90°,∠ECG=45°,
∴=,GE∥AB,
∴==.
(2)解:AG=BE.理由如下:
如图,连接CG,
由旋转性质知∠BCE=∠ACG=α.
在Rt△CEG和Rt△CBA中,
=cos 45°=,=cos 45°=,
∴==,∴△ACG∽△BCE,
∴==,[来源:学_科_网]
∴线段AG与BE之间的数量关系为AG=BE.
(3)解:3
提示:∵∠CEF=45°,点B,E,F三点共线,
∴∠BEC=135°.
∵△ACG∽△BCE,
∴∠AGC=∠BEC=135°,
∴∠AGH=∠CAH=45°.
∵∠CHA=∠AHG,
∴△AHG∽△CHA,
∴==.
设BC=CD=AD=a,则AC=a,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
则由=得=,
∴AH=a,
则DH=AD-AH=a,CH==a,
∴=得=,
解得a=3,即BC=3.
由莲山课件提供http://www.5ykj.com/ 资源全部免费