由莲山课件提供http://www.5ykj.com/ 资源全部免费
九年级数学期末试卷2019.1
注意事项: 1.本卷满分130分.考试时间为120分钟.
2.卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果.
一、选择题(本大题共10题,每小题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请用2B铅笔把答题卡上相应的答案涂黑.)
1.抛物线y=(x﹣1)2+2的顶点坐标是 ( )
A.(1,2) B.(1.-2) C.(-1.2) D.(-1.-2)
2.一元二次方程x2=2x的根是 ( )
A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=-2
3.已知点A在半径为r的⊙O内,点A与点O的距离为6,则r的取值范围是 ( )
A.r < 6 B.r > 6 C.r ≥ 6 D.r ≤ 6
4.在Rt△ABC中,∠C=90°,∠B=35°,AB=7,则BC的长为 ( )
A.7sin35° B. C.7cos35° D.7tan35°
5.在比例尺是1∶8000的地图上,中山路的长度约为25cm,该路段实际长度约为( )
A.3200 m B.3000 m C.2 400 m D.2 000 m
6.如图,点A、B、C均在⊙O上,若∠ABC=40°,则∠AOC的大小是( )
A.90° B.80° C.70° D.50°
7.如图,A,B两地被池塘隔开,小明通过下列方法测出了A、B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为6m,由此他就知道了A、B间的距离.有关他这次探究活动的描述错误的是 ( )
A.AB=12m B.MN∥AB C.△CMN∽△CAB D.CM:MA=1:2
8.如图,在矩形ABCD中,AB=3,BC=5,以B为圆心BC为半径画弧交AD于点E,连接CE,作BF⊥CE,垂足为F,则tan∠FBC的值为 ( )
A. B. C. D.
(第8题)
(第7题)
(第6题)
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
9.若点,,都在抛物线 上,则下列结论正确的是( )
A. B.
C. D.
10.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1,按这样的规律进行下去,第2022个正方形(正方形ABCD看作第1个)的面积为 ( )
(第10题)
A.5()2020 B.5()2022
C.5()2021 D.5()2022
二、填空题(每题2分,共16分)
11. 若=,则的值为 .
12.若一组数据1,2,x,4的众数是1,则这组数据的方差为 .
13. 将函数y=﹣2x2的图象沿着x轴向右平移3个单位后所得到的图象的函数表达式为 .
14.已知关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是 .
15.如图,半径为1的⊙O与正五边形ABCDE的边AB、AE相切于点M、N,则劣弧的长度为 .
16.小红需要用扇形薄纸板制作成底面半径为9厘米,高为12厘米的圆锥形生日帽,如图所示,则该扇形薄纸板的圆心角为 .
(第15题)
(第16题)
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
17.如图,在△ABC中,∠ACB=90°,AB=18,cosB=,把△ABC绕着点C旋转,使点B与AB边上的点D重合,点A落在点E处,则线段AE的长为 .
18.如图,在直角△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且DE=3.若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为 .
第17题 第18题
三、解答题(本大题共10小题,共84分,解答时应写出文字说明、证明过程或演算步骤) .
19.解方程:(每题4分,共8分)(1) x2-8x+6=0 (2) 2(x-1)2=3x-3
20.计算(每小题4分,共8分)
(1)﹣+|1﹣4sin60°|; (2) .
21.(本题满分8分)如图,在边长为1的正方形网格中,有一格点△ABC,已知A、B、C三点的坐标分别是A(1,0)、B(2,-1)、C(3,1).
(1) 请在网格图形中画出平面直角坐标系;
(2) 以原点O为位似中心,将△ABC放大2倍,画出放大后的△A′B′C′;
(3) 写出△A′B′C′各顶点的坐标:A′_______,B′________,
C′________;
(4) 写出△A′B′C′的重心坐标:___________;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
22.(本题满分8分)抚顺市某校想知道学生对“遥远的赫图阿拉”,“旗袍故里”等家乡旅游品牌的了解程度,随机抽取了部分学生进行问卷调查,问卷有四个选项(每位被调查的学生必选且只选一项)A.十分了解,B.了解较多,C.了解较少,D.不知道.将调查的结果绘制成如下两幅不完整的统计图,根据两幅统计图中的信息回答下列问题:
(1)本次调查了多少名学生?
(2)补全条形统计图;
(3)该校共有500名学生,请你估计“十分了解”的学生有多少名?
(4)在被调查“十分了解”的学生中有四名学生会干部,他们中有3名男生和1名女生,学校想从这4人中任选两人做家乡旅游品牌宣传员,请用列表或画树状图法求出被选中的两人恰好是一男一女的概率.
23.(本题满分6分)如图,为了测量建筑物AB的高度,在D处树立标杆CD,标杆的高是2m,在DB上选取观测点E、F,从E测得标杆和建筑物的顶部C、A的仰角分别为58°、45°.从F测得C、A的仰角分别为22°、70°.求建筑物AB的高度(精确到0.1m).(参考数据:tan22°≈0.40,tan58°≈1.60,tan70°≈2.75.)
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
24.(本题满分8分)如图,AB为⊙O的直径,C为⊙O上一点,∠CAB的角平分线AD交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.
(1)求证:DE是⊙O的切线;
(2)若∠CAB=60°,DE=3,求AC的长.
25.(本题满分8分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.
(1)求y与x之间的函数关系式;
(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.
26. (本题满分10分)如图,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.点P从B出发沿BA 向A运动,速度为每秒1cm,点E是点B以P为对称中心的对称点.点P运动的同时,点Q从A出发沿AC向C运动,速度为每秒2cm .当点Q到达顶点C时,P,Q同时停止运动.设P, Q两点运动时间为t秒.
(1)当t为何值时,PQ∥BC ?
(2)设四边形PQCB的面积为y,求y关于t的函数解析式;
(3)四边形PQCB的面积与△APQ面积比能为3:2吗?若能,求出此时t的值;若不能,请说明理由;
(4)当t为何值时,△AEQ为等腰三角形?
(直接写出答案)
(备用图)
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
27.(本题满分10分)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.
(1)求抛物线的解析式;
(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.
①求点P的坐标;
②在直线PD上是否存在点M,使△ABM是以AB为斜边的直角三角形?若存在,求出符合条件的点M的坐标;若不存在,请说明理由.
28.(本题满分10分)【发现问题】爱好数学的小明在做作业时碰到这样的一道题目:
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
如图①,点O为坐标原点,⊙O的半径为1,点A(2,0).动点B在⊙O上,连结AB,作等边△ABC(A,B,C为顺时针顺序),求OC的最大值
【解决问题】小明经过多次的尝试与探索,终于得到解题思路:在图①中,连接OB,以OB为边在OB的左侧作等边三角形BOE,连接AE.
(1)请你找出图中与OC相等的线段,并说明理由;
(2)线段OC的最大值为 .
【灵活运用】
(3)如图②,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,求线段AM长的最大值及此时点P的坐标.
【迁移拓展】
(4)如图③,BC=4,点D是以BC为直径的半圆上不同于B、C的一个动点,以BD为边作等边△ABD,请直接写出AC的最值.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
九年级数学期末试卷评分标准
一、 选择题(每题3分,共30分)
1
2
3
4
5
6
7
8
9
10
A
C
B
C
D
B
D
D
B
C
二、填空题:(每空2分,共16分)
11. ;12. 1.5 ;13. ;14. m≤3且m≠2 ;
15. π ; 16. 216° ; 17. 8 ; 18.
三、解答题(本大题共10小题,共84分)
19.解方程:(每题4分,共8分)(1) x2-8x+6=0 (2) 2(x-1)2=3x-3
x1=4+,x2=4﹣ x1=1,x2=2.5
20.计算(每小题4分,共8分)
(1)﹣+|1﹣4sin60°|; (2) .
=-2
=-1
21.(1) 1分(2)2分
(3)从图可知:A(﹣2,0),B(﹣4,2),C(﹣6,﹣2);3分
(4)从图上可知重心坐标(﹣4,0);2分
22.(1)15÷30%=50(人),
答:本次调查了50名学生. 1分
(2)50﹣10﹣15﹣5=10(人),
条形图如图所示:
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
1分
(3)500×=100(人),
答:该校共有500名学生,请你估计“十分了解”的学生有100名. 1分
(4)树状图如下:
3分
共有12种等可能情况,其中所选两位参赛选手恰好是一男一女有6种.1分
所以,所选两位参赛选手恰好是一男一女的概率P==.1分
23.解:在Rt△CED中,∠CED=58°,
∵tan58°=,∴DE=,
在Rt△CFD中,∠CFD=22°,
∵tan22°=,
∴DF=,[中*@国&教%育出版~网]
∴EF=DF﹣DE=,
同理:EF=BE﹣BF=,
∴,[来源:zz%ste*p&.co#m~]
解得:AB≈5.9(米)
24. (1)(1)连接OD,如图,
∵OA=OD,
∴∠OAD=∠ODA,
∵AD平分∠CAB,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴∠CAD=∠OAD,
∴∠CAD=∠ODA,
∴OD∥AC,
∵DE⊥AC,
∴DE⊥OD,
∴DE是⊙O的切线; 4分
(2)连接BD,则∠ADB=90°,
∵∠CAB=60°,AD平分∠CAB,
∴∠CAD=∠DAB=30°,
∵DE=3,
∴AD=6,
∴AB=12,
连接OC,则OC=OA=6,
∵∠CAB=60°,
∴AC=OA=OC=6. 4分
25. (1)由题意得:,
解得:.
故y与x之间的函数关系式为:y=﹣10x+700, 2分
(2)由题意,得
﹣10x+700≥240,
解得x≤46,
设利润为w=(x﹣30)•y=(x﹣30)(﹣10x+700),
w=﹣10x2+1000x﹣21000 2分
=﹣10(x﹣50)2+4000,
∵﹣10<0,
∴x<50时,w随x的增大而增大,
∴x=46时,w大=﹣10(46﹣50)2+4000=3840,
答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;2分
(3)w﹣150=﹣10x2+1000x﹣21000﹣150=3600,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
﹣10(x﹣50)2=﹣250,
x﹣50=±5,
x1=55,x2=45,
如图所示,由图象得:
当45≤x≤55时,捐款后每天剩余利润不低于3600元. 2分
26. (1)Rt△ABC中,∵∠C=90°,BC=8cm,AC=6cm,
∴AB=10cm.
∵BP=t,AQ=2t,
∴AP=AB﹣BP=10﹣t.
∵PQ∥BC,
∴=,
∴=,
解得t=; 2分
(2)∵S四边形PQCB=S△ACB﹣S△APQ=AC•BC﹣AP•AQ•sinA
∴y=×6×8﹣×(10﹣t)•2t•
=24﹣t(10﹣t)
=t2﹣8t+24,
即y关于t的函数关系式为y=t2﹣8t+24; 3分
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(3)四边形PQCB面积能是△ABC面积的,理由如下:
由题意,得t2﹣8t+24=×24,
整理,得t2﹣10t+12=0,
解得t1=5﹣,t2=5+(不合题意舍去).
故四边形PQCB面积能是△ABC面积的,此时t的值为5﹣; 2分
(4)△AEQ为等腰三角形时,分三种情况讨论:
①如果AE=AQ,那么10﹣2t=2t,解得t=;
②如果EA=EQ,那么(10﹣2t)×=t,解得t=;
③如果QA=QE,那么2t×=5﹣t,解得t=.
故当t为秒秒秒时,△AEQ为等腰三角形. 3分
27. (1)∵B(1,0),
∴OB=1,
∵OC=2OB=2,
∴C(﹣2,0),
Rt△ABC中,tan∠ABC=2,
∴,
∴,
∴AC=6,
∴A(﹣2,6),
把A(﹣2,6)和B(1,0)代入y=﹣x2+bx+c得:,
解得:,
∴抛物线的解析式为:y=﹣x2﹣3x+4; 3分
(2)①∵A(﹣2,6),B(1,0),
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
易得AB的解析式为:y=﹣2x+2,
设P(x,﹣x2﹣3x+4),则E(x,﹣2x+2),
∵PE=DE,
∴﹣x2﹣3x+4﹣(﹣2x+2)=(﹣2x+2),
x=1(舍)或﹣1,
∴P(﹣1,6); 3分
②∵M在直线PD上,且P(﹣1,6),
设M(﹣1,y),
∴AM2=(﹣1+2)2+(y﹣6)2=1+(y﹣6)2,
BM2=(1+1)2+y2=4+y2,
AB2=(1+2)2+62=45,
当∠AMB=90°时,有AM2+BM2=AB2,
∴1+(y﹣6)2+4+y2=45,
解得:y=3,
∴M(﹣1,3+)或(﹣1,3﹣);
综上所述,点M的坐标为:∴M(﹣1,3+)或(﹣1,3﹣) 4分
28.(1)如图①中,结论:OC=AE,
理由:∵△ABC,△BOE都是等边三角形,
∴BC=BA,BO=BE,∠CBA=∠OBE=60°,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴∠CBO=∠ABE,
∴△CBO≌△ABE,
∴OC=AE. 2分
(2)在△AOE中,AE≤OE+OA,
∴当E、O、A共线,
∴AE的最大值为3,
∴OC的最大值为3.
故答案为3. 1分
(3)如图1,连接BM,
∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,
∴PN=PA=2,BN=AM,
∵A的坐标为(2,0),点B的坐标为(5,0),
∴OA=2,OB=5,
∴AB=3,
∴线段AM长的最大值=线段BN长的最大值,
∴当N在线段BA的延长线时,线段BN取得最大值(如图2中)
最大值=AB+AN,
∵AN=AP=2,
∴最大值为2+3; 2分
如图2,过P作PE⊥x轴于E,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵△APN是等腰直角三角形,
∴PE=AE=,
∴OE=BO﹣AB﹣AE=5﹣3﹣=2﹣,
∴P(2﹣,). 1分
(4)如图4中,以BC为边作等边三角形△BCM,
∵∠ABD=∠CBM=60°,
∴∠ABC=∠DBM,∵AB=DB,BC=BM,
∴△ABC≌△DBM,
∴AC=MD,
∴欲求AC的最大值,只要求出DM的最大值即可,
∵BC=4=定值,∠BDC=90°,
∴点D在以BC为直径的⊙O上运动,
由图象可知,当点D在BC上方,DM⊥BC时,DM的值最大,最大值=2+2 ,
∴AC的最大值为2+2. 2分
当点A在线段BD的右侧时,同法可得AC的最小值为2﹣2. 2分
由莲山课件提供http://www.5ykj.com/ 资源全部免费