市质检数学(理科)试题答题分析 第 1 页(共 17 页)
准考证号________________ 姓名________________
(在此卷上答题无效)
保密★启用前
泉州市 2019 届普通高中毕业班第一次质量检查
理 科 数 学
本试卷共 23 题,满分 150 分,共 5 页.考试用时 120 分钟.
三、解答题:共 70 分.解答应写出文字说明,证明过程或演算步骤.第 17~21 题为必考题,每个试题考
生都必须作答.第 22、23 题为选考题,考生根据要求作答.
(一)必考题:共 60 分.
17.( 12 分)
已知数列 na 的前 n 项和 nS 满足 12nnS a a,且 1a , 2S , 2 成等差数列.
(1)求 na 的通项公式;
(2)若 22 lognnba ,数列 nb 的前 n 项和为 nT ,比较 nS 与 nT 的大小.
【命题意图】本小题主要考查数列的递推关系、等比数列的定义、等差数列、等比数列的通项公式与前 n
项和等基础知识,考查运算求解、逻辑推理能力,考查函数与方程思想、化归与转化思想等,
体现基础性和综合性,导向对发展逻辑推理、数学运算等核心素养的关注.
【试题简析】(1)法一:因为 12nnS a a ①
所以 1 1 12nnS a a ② ·································································· 1 分
由②-①,可得 11n n na a a 即 1 1
2
n
n
a
a
, ·············································· 2 分
所以 na 是公比为 1
2
的等比数列, ································· 2 分(这步跳过不扣分)
又 1a , 2S , 2 成等差数列,所以 2122Sa,······························ (概念分)3 分
即 1 1 1
1222a a a
,解得 1 1a , ························································ 4 分
故数列 na 的通项公式 1
1
2n na . ··························································· 6 分
法二: , , 成等差数列,所以 , ······································ 1 分 市质检数学(理科)试题答题分析 第 2 页(共 17 页)
即 1 1 1
1222a a a
,解得 1 1a , ························································ 2 分
由 12nnS a a,得 12 2 ( 2)nnS S n , ················································· 3 分
进而求得 12(1 ( ) )2
n
nS , ········································································· 5 分
再由 (或由 ),求得 1
1
2n na . ···························· 6 分
法三(参考给分意见):求得 , ··························································· 2 分
再求 2
1
2a ,
3
1
4a , ······························································································· 3 分
所以数列 na 的通项公式 . ··································· (归纳猜想分)4 分
再进行证明,可再得 2 分.
(2)因为 221
12 log 2 log 2 1 12nn nb a n n , ············ (对数运算分)7 分
所以 2 1 3
22n
n n n nT , ········································· (求和公式分)9 分
又 1 1
1222nnnS a a , ········································································ 10 分
因为 *nN ,所以 2nT , 2nS , ···························································· 11 分
因此 nnTS . ··························································································· 12 分
18.( 12 分)
如图,四棱锥 A BCDE 中,BE 平面 ABC ,BE CD∥ , 2AB AC BC CD BE ,F 为 AD
的中点.
(1)证明: EF 平面 ACD ;
(2)求二面角 A DE C的余弦值. 市质检数学(理科)试题答题分析 第 3 页(共 17 页)
【命题意图】本题考查线面垂直的定义及判定、二面角的求解及空间向量的坐标运算等基础知识;考查空
间想象能力、推理论证及运算求解能力;考查数形结合
思想、化归与转化思想、函数与方程思想等;体现基础
性、综合性与应用性,导向对发展数学抽象、逻辑推理、
数学运算、直观想象等核心素养的关注.
【试题简析】
解法一:
(1)如图,取 AB 的中点为O ,连结CO ,
因为 ABC△ 为正三角形,所以CO AB , ····························································· 1 分
取 AE 中点G ,连结OG ,则OG BE∥ ,
已知 BE 平面 ABC ,所以OG 平面 , ························································ 2 分
,CO AB 平面 ,所以 ,OG CO OG AB, ·················································· 3 分
以 为坐标原点, ,,OA OG OC 的方向分别为 ,,x y z 轴的正方向建系,
设 22AB AC BC CD BE ,
则 (1,0,0), ( 1,0,0), (0,0, 3), (0,2, 3), ( 1,1,0),A B C D E
由 1
2AF AD 得 13( ,1, )22F ,所以 33( ,0, )22EF , ················································ 4 分
( 1,2, 3)AD , (0,2,0)CD ,
0, 0EF AD EF CD ,又CD AD D (相交未写暂不扣分), ···························· 5 分
所以 EF 平面 ACD . ··························································································· 6 分
(2)(用(1)的方法的,此处补给建系分 1 分) ··································································· 7 分
在(1)的基础上,计算可得 0, 0CF AD CF EF , 市质检数学(理科)试题答题分析 第 4 页(共 17 页)
所以CF 为平面 ADE 的一个法向量, ········································································· 9 分
设平面CDE 的法向量为 =( , , )x y zm ,则
0
0
CD
ED
m
m
,
20
30
y
x y z
,令 1x ,
得 3=(1,0, )3m 为平面 的一个法向量, ······················································ 11 分
110 622cos , 442 3
CF
m ,
所以二面角 A DE C的余弦值为 6
4
. ···························································· 12 分
解法二:
(1)取 AC 的中点为 H ,连结 ,BH FH ,
在 Rt ACD△ 中,中位线 HF CD∥ ,且 1
2HF CD ,
由已知 BE CD∥ ,且 1
2BE CD ,
所以, //HF BE ,且 HF BE ,即 EFHB 为平行四边形,故 EF BH∥ . ······················ 1 分
因为 ABC△ 为正三角形,所以 BH AC ,故 EF AC . ············································· 2 分
由 BE 平面 ABC ,得 AB , BE BC , ······················································ 3 分
所以 ABE 为直角三角形,且四边形 EBCD 为直角梯形,
设 22AB AC BC CD BE ,
计算得 5AE ED,所以 EF AD , ······························································· 4 分
又由于 AC AD A , ························································································ 5 分
所以 EF 平面 ACD . ························································································ 6 分 市质检数学(理科)试题答题分析 第 5 页(共 17 页)
(2)如图,取 AB 的中点为O ,连结CO ,
因为 ABC△ 为正三角形,所以CO AB ,
已知 BE 平面 ABC ,CO 平面 ,所以 BE CO ,
AB BE B ,所以CO 平面 ABE ,
取 AE 中点G ,连结OG ,则OG BE∥ ,所以OG CO ,
以 为坐标原点, ,,OA OG OC 的方向分别为 ,,x y z 轴的正方向建系, ··························· 7 分
则 (1,0,0), ( 1,0,0), (0,0, 3), (0,2, 3), ( 1,1,0),A B C D E
由 1
2AF AD ,得 13( ,1, )22F , 0, 0CF AD CF EF ,
所以CF 为平面 ADE 的一个法向量(也可用几何法证CF AD ,CF EF ), ············ 9 分
设平面CDE 的法向量为 =( , , )x y zm ,则 0
0
CD
ED
m
m
,
20
30
y
x y z
,令 1x ,
得 3=(1,0, )3m 为平面CDE 的一个法向量, ························································· 11 分
110 622cos , 442 3
CF
m ,
所以二面角 A DE C的余弦值为 6
4
.··································································· 12 分
解法三:(1)设 22AB AC BC CD BE ,
由 BE 平面 ABC ,得 AB , BE BC , ·········································· 1 分
所以 ABE 为直角三角形,且四边形 EBCD 为直角梯形, 市质检数学(理科)试题答题分析 第 6 页(共 17 页)
计算得 5AE ED,所以 EF AD , ··················································· 2 分
在△ AED 中, ,所以 3EF ,
在直角梯形 EBCD 中计算得 5CE ,
在△ ACD 中,计算得 2CF ,
根据勾股定理证得 EF CF ,··································································· 4 分
又由于CF AD F , ············································································ 5 分
所以 EF 平面 ACD . ············································································ 6 分
(2)同解法一、二.
19.( 12 分)
平面直角坐标系 xOy 中, ,AF分别是椭圆
22
22: 1( 0)xyE a bab 的顶点和焦点, OAF△ 为等腰
三角形, (2,1)P 在 E 上.
(1)求 E 的方程;
(2)若直线 :l y x m 与 交于 ,AB两点,直线 ,PA PB 分别与 x 轴交于 ,CD两点,证明: PCD△
是等腰三角形.
【命题意图】本小题主要考查椭圆的方程、直线与圆锥曲线的位置关系等基础知识;考查运算求解、逻辑
推理能力;考查数形结合思想、转化化归思想;导向对数学运算、直观想象、逻辑推理素养
的关注.
【试题简析】
解法 1:( 1)由题意,可知点 A 为椭圆的短轴端点,
故 OAF△ 为等腰直角三角形且 90AOF, ··················································· 1 分
所以bc ,……① ····················································································· 2 分
因为 在 上,所以 22
411ab, ……②················································· 3 分
又 2 2 2a b c,……③ ··············································································· 4 分
由①②③,可得 6, 3ab,
故所求椭圆的方程为
22
163
xy. ································································ 5 分 市质检数学(理科)试题答题分析 第 7 页(共 17 页)
(2)不妨设 (0, 3)A .因为 A 在直线 y x m 上,所以 3m , ······························ 6 分
由 22
3,
1,63
yx
xy
消去 y ,得 23 4 3 0xx, ···················································· 7 分
解得 0x 或 43
3x ,
故 4 3 3(0, 3), ( , )33AB, ········································································ 8 分
直线 ,PA PB 的斜率 1
1
1
1 13
22
yk x
, ························································ 9 分
2
3 1 3 1 3 13
24 3 4 2 323
k
, ···························································· 10 分
故 120kk, ··························································································· 11 分
所以 PCD PDC ,
故 PCD△ 是等腰三角形. ········································································· 12 分
解法 2:( 1)同解法 1; ·································································································· 5 分
(2)不妨设 .因为 在直线 上,所以 , ······························ 6 分
由 消去 ,得 , ······················································ 7 分
从而 1 2 1 2
43,03x x x x , ····································································· 8 分
直线 的斜率 1
1
1
1
2
yk x
, 2
2
2
1
2
yk x
, ···················································· 9 分
则 1 2 2 1 1 2
12
1 2 1 2
1 1 ( 2)( 1) ( 2)( 1)
2 2 ( 2)( 2)
y y x y x ykk x x x x
,
2 1 1 2
12
( 2)( 3 1) ( 2)( 3 1)
( 2)( 2)
x x x x
xx
, 市质检数学(理科)试题答题分析 第 8 页(共 17 页)
1 2 1 2
12
2 ( 3 3)( ) 4( 3 1)
( 2)( 2)
x x x x
xx
,
12
43( 3 3)( ) 4( 3 1)3
( 2)( 2)xx
,
12
(4 4)( 3 1) 0( 2)( 2)xx
, ··································································· 11 分
所以 PCD PCD ,
故 PCD△ 是等腰三角形. ··········································································· 12 分
解法 3:( 1)同解法 1; ·································································································· 5 分
(2)不妨设 (0, 3)A .因为 A 在直线 y x m 上,所以 3m , ······························ 6 分
由 22
3,
1,63
yx
xy
消去 y ,得 23 4 3 0xx, ···················································· 7 分
解得 0x 或 43
3x ,
故 4 3 3(0, 3), ( , )33AB, ········································································ 8 分
直线 ,PA PB 的斜率 1
1
1
1 13
22
yk x
, ·························································· 9 分
2
3 1 3 1 3 13
24 3 4 2 323
k
, ····························································· 10 分
直线 PA 的方程为 13 32yx,令 0y ,得 33x ,即 (3 3,0)C ,
直线直线 PB 的方程为 311 ( 2)2yx ,
令 ,得 13x ,即 (1 3,0)D , ···················································· 11 分
故 2 2 2(3 3 2) 1 (1 3) 1PC ,
22(2 1 3) 1 (1 3) 1PC , 市质检数学(理科)试题答题分析 第 9 页(共 17 页)
所以 PC PD ,
故 PCD△ 是等腰三角形. ··········································································· 12 分
解法 4:( 1)同解法 1; ·································································································· 5 分
(2)不妨设 (0, 3)A .因为 A 在直线 y x m 上,所以 3m , ······························ 6 分
由 22
3,
1,63
yx
xy
消去 y ,得 23 4 3 0xx, ···················································· 7 分
解得 0x 或 43
3x ,
故 4 3 3(0, 3), ( , )33AB, ········································································ 8 分
直线 ,PA PB 的斜率 1
1
1
1 13
22
yk x
, ·························································· 9 分
2
3 1 3 1 3 13
24 3 4 2 323
k
, ····························································· 10 分
直线 PA 的方程为 13 32yx,令 0y ,得 33x ,即 (3 3,0)C ,
直线直线 PB 的方程为 311 ( 2)2yx ,
令 ,得 13x ,即 (1 3,0)D , ···················································· 11 分
故 22
CD
P
xx x ,即 P 在线段CD 的垂直平分线上,
所以 ,
故 是等腰三角形. ··········································································· 12 分
20.( 12 分)
法国数学家亨利·庞加莱(JulesHenri Poincaré)是个每天都会吃面包的人,他经常光顾同一家面包店,面
包师声称卖给庞加莱的面包平均重量是 1000g,上下浮动 50g.在庞加莱眼中,这用数学语言来表达就是:
面包的重量服从期望为 1000g,标准差为 50g 的正态分布. 市质检数学(理科)试题答题分析 第 10 页(共 17 页)
(1)假如面包师没有撒谎,现庞加莱从该面包店任意买 2 个面包,求其质量均不少于 1000g 的概率;
(2)出于兴趣或一个偶然的念头,庞加莱每天将买来的面包称重,前 25 个数据纪录如下:
庞加莱 25 个面包质量()X 的统计数据(单位:g)
983 972 966 992 1010 1008 954 952 969
968 998 1001 1006 957 950 969 971 975
952 959 987 1011 1000 997 961
设从这 25 个面包中任取 2 个,其质量不少于1000g 的面包数记为 ,求 ()E ;
(3)庞加莱计算出这 25 个面包质量()X 的平均值 978.72X g,标准差是 20.16g ,认定面包师在
制作过程中偷工减料,并果断举报给质检部门,质检员对面包师做了处罚,面包师也承认自己的错误,并
同意做出改正.
庞加莱在接下来的一段时间里每天都去这家面包店买面包,他又认真记录了 25 个面包的质量,并算
得它们的平均值为1002.6g ,标准差是5.08g ,于是庞加莱又一次将面包师举报了.
请你根据两次平均值和标准差的计算结果及其统计学意义,说说庞加莱又一次举报的理由.
【命题意图】本小题主要考查古典概型、分布列、期望、方差等基础知识,考查数据处理能力、应用意识
和创新意识等,考查统计与概率思想,导向对发展逻辑推理、数学运算、数学建模、数据分
析等核心素养的关注.
【试题简析】
(1)由已知可得庞加莱从该面包店购买任意一个面包,其质量不少于1000g 的概率为 1
2
, ................ 1 分
设庞加莱从该面包店购买 2 个面包,其质量不少于1000g 的面包数为 ,
由已知可得 1~ (2, )2B ,( 模型识别,符号表达与文字表达均可) .................................................. 2 分
故
2
2
2
11( 2) 24PC
.(公式与计算,各 1 分) ........................................................................ 4 分
(2)25 个面包中,质量不少于1000g 的有 6 个,
的可能取值为0,1,2 ,............................................................................................................................ 5 分
2
19
2
25
171 57( 0) 300 100
CP C ; .......................................................................................................... 6 分
11
6 19
2
25
114 19( 1) 300 50
CCP C ; ...................................................................................................... 7 分 市质检数学(理科)试题答题分析 第 11 页(共 17 页)
2
6
2
25
15 1( 2) 300 20
CP C , ............................................................................................................ 8 分
所以 57 19 1 24( ) 0 1 2 0.48100 50 20 50E . ..................................................................... 10 分
(3)庞加莱经过仔细思考,认为标准差代表了面包重量的误差,可以理解成面包师手艺的精度,这个
数字在短时间内很难改变,那说明面包师取面的,这对面包师的手艺是个巨大的飞越,显然并不合理,庞
加莱断定只能是随机性出现了问题.也就是面包的来源不是随机的,而是人为设定的,最大的可能就是每
当庞加莱到来时,面包师从现有面包中挑选一个较大的给了庞加莱,而面包师的制作方式根本没有改变.面
包质量的平均值从978.72g 提高到了1002.6g 也充分说明了这一点. ..................................................... 12 分
评分说明:
(1)立意解读:考查方差、标准差的统计学意义,它们在现实生活中如何被真实地应用,数学家庞加莱
给出了不错的借鉴;统计学虽然有着严谨的数学计算,但它并不是完美无缺的,所有的统计归根结底都是
一个概率问题,不是数学上 1+1=2 那么绝对,我们通过分析数据推断出的结论,永远不会是 100%正确的,
我们不可能通过数据得出完全确凿的真相,只能通过合理控制误差猜测和接近真相.
(2)评分建议:指出关键词“标准差代表了面包重量的误差”,给 1 分;提到类似“短时间内误差由
20.16g 降低到了5.08g ,可能性不大”, 以“面包质量的平均值从 提高到了 ”佐证特意
挑选较大面包给庞加莱等,可再给 1 分。总之,语能达意,能体现统计学观点,即可酌情给分。
21.( 12 分)
已知函数 21 ln2f x x bx a x 的极大值点是1.
(1)求实数 a 的取值范围;
(2)若 0 1f x f ( 0 1x ), 证明: 2
0a x a.
【命题意图】本题考查导数的应用,利用导数研究函数的单调性、极值、不等式证明等问题,考查推理论
证能力、运算求解能力,考查函数与方程思想、化归与转化思想、分类与整合思想,体现综
合性、应用性及创新性,导向对发展逻辑推理、数学运算、数学建模等核心素养的关注.
【试题简析】
解法一:
(1)函数 fx的定义域为函数 0x ,
因为 af x x b x
, ................................................................................................................. 1 分 市质检数学(理科)试题答题分析 第 12 页(共 17 页)
所以 1 1 0f a b 得, 1ba . .................................................................................... 2 分
此时, 21 1 ln2f x x a x a x , 1 af x x a x
1x x a
x
.
(ⅰ)当 0a 时, 0xa.
所以若01x, 0fx ,若 1x , 0fx ,
故 1x 是 fx的极小值点,不满足题意; ....................................................................... 3 分
(ⅱ)当 0a 时,由 0fx 得: 1x 或 xa .
①当 1a 时, 0fx , fx在 0, 单调递增,不满足题意; .......................... 4 分
②当01a时,
若 1ax, 0fx ,若0 xa或 1x , 0fx ,
故 1x 是 fx的极小值点,不满足题意; .................................................................. 5 分
③当 1a 时,
若 01x或 xa , 0fx ,若1 xa, 0fx ,
故 1x 是 fx的极大值点,满足题意. ....................................................................... 5 分
(注:①②③中正确回答的前两个各占 1 分,三个共得 2 分)
综上,可得 1a . ...................................................................................................................... 6 分
(2)由(1)知, 在区间 1, a 单调递减,在 ,a 单调递增.
又 0 1f x f ( 0 1x ), 所以 0xa . ............................................................................ 7 分
2
0f a f x 2 1f a f ................................................................................................. 8 分
4 2 3112 ln22a a a a a a
32112ln 122a a a a a a
.
令 32112ln 122h x x x x x x ( 1x ),
则 2
2
3 2 11222h x x x xx
2
2
2
11( 1) ( ) 2( )22
xxxxx 市质检数学(理科)试题答题分析 第 13 页(共 17 页)
42
2
2
11( 1) 22
xxx xx
2
2
2
3 4 1( 1) 2
xxx x
2
2
1 3 1 1
02
x x x
x
. ............................................................................. 10 分
所以 hx在 1, 单调递增.
因此 ha 32112ln 122a a a a a 10h.
所以 2
0 0f a f x,即 2
0f a f x . .................................................................. 11 分
因为 fx在 ,a 单调递增, 0xa , 2aa .
所以 2
0ax .
综上, 2
0a x a. ......................................................................................................................... 12 分
解法二:
(1)函数 fx的定义域为函数 0x ,
因为 af x x b x
, ................................................................................................................. 1 分
所以 1 1 0f a b 得, 1ba . .................................................................................... 2 分
此时, 21 1 ln2f x x a x a x , 1 af x x a x
1x x a
x
.
(ⅰ)因为1是 fx的极大值点,
所以在 1x 左侧的附近(左邻域), fx 1 0x x a
x
恒成立,
即存在 (01] , ,使得对 (1 ,1]x , 恒成立,
即对 , xa 恒成立,
即 a (1 ,1] 内的 x 的最大值,所以 1a . ...................................................................... 4 分
(ⅱ)因为 是 的极大值点, 市质检数学(理科)试题答题分析 第 14 页(共 17 页)
所以在 1x 右侧的附近(右邻域), fx 1 0x x a
x
恒成立,
即存在 0 ,使得对 (1,1 )x , 1 0x x a
x
恒成立,
即对 , xa 恒成立,
由 ,1x a x,得 1a .
由于(ⅰ)、(ⅱ)同时满足,所以 . ................................................................................. 5 分
当 时,对01x, 0fx ,对1 xa, 0fx ,对 xa , ,
即 fx在(0,1) 递增,在(1, )a 递减,在( , )a 递增,
所以 存在唯一的极大值点 1x ,符合题意.
综上,得 1a . ................................................................................................................................. 6 分
(二)选考题:共 10 分.请考生在第 22、23 题中任选一题作答,如果多做,则按所做的第一题计分.
22.[选修 44 :坐标系与参数方程](10 分)
在直角坐标系 xOy 中,直线 :l y kx 的倾斜角为 ,曲线 22:( 1) ( 1) 8C x y .以坐标原点为
极点, x 轴正半轴为极轴建立极坐标系.
(1)求l 和C 的极坐标方程;
(2)若 与C 交于 ,AB两点,求 AO BO 的取值范围.
【命题意图】本小题主要考查直线、圆的直角坐标方程与极坐标方程的互化,极坐标极角的几何意义,直
线与圆的位置关系等基础知识,考查运算求解能力,考查函数与方程思想、转化与化归思想、
数形结合思想,体现基础性与综合性,导向对发展直观想象、逻辑推理、数学运算等核心素
养的关注.
【试题简析】
解法一:(1)直线 的极坐标方程为 () R ,( 未注明 R ,扣 1 分) ····························· 2 分
将 cos , sinxy 代入 222 2 6 0x y x y 中,(两公式各 1 分) ············ 4 分
得到曲线 的极坐标方程为 2 2 cos 2 sin 6 0 .(直写答案不扣中间分) 5 分
(2)设 1( , )A , 2( , )B ,则 122cos 2sin , 12 6 , ···················· 6 分
所以 1 2 1 2|| |-| ||=|| | | ||=| |OA OB ,····························································· 7 分 市质检数学(理科)试题答题分析 第 15 页(共 17 页)
=|2cos 2sin | 2 2 | sin( ) |4
, ········································ 8 分
因为0 ,则 5
4 4 4
, 2 sin( ) 124
, ···························· 9 分
所以0 || |-| || 2 2OA OB. ·········································································· 10 分
解法二:(1)同解法一;
(2)直线l 的参数方程为
cos
sin
xt
yt
(t 为参数, ), ···································· 6 分
代入 222 2 6 0x y x y 中,得到 2 2 cos -2 sin 6 0t t t ,
所以 1 2 1 2|| |-| ||=||t | | t ||= | t +t |OA OB , ······························································· 7 分
| 2cos +2sin | 2 2 | sin( ) |4
, ········································ 8 分
因为 ,则 , , ···························· 9 分
所以0 || | | || 2 2OA OB . ·········································································· 10 分
解法三:(1)同解法一;
(2)设曲线C 的圆心 ,半径为 r .
考察图形易知,当直线 过 时,|| |-| ||OA OB 取到最大值, ···································· 6 分
max|| |-| ||) =(r+|OC|)-(r-|OC|)=2|OC|=2 2|OA OB( . ················································ 7 分
当直线l OC 时, 取到最小值, ······················································· 8 分
min|| |-| ||) =0OA OB( . ························································································· 9 分
所以 . ········································································· 10 分
23.[选修 45 :不等式选讲](10 分)
已知函数 ( ) | 1| | 3|f x x x .
(1)求 ( ) 3fx 的解集;
(2)若关于 x 的不等式
2 36() mmfx m
的解集非空,求 m 的取值范围. 市质检数学(理科)试题答题分析 第 16 页(共 17 页)
【命题意图】本小题主要考查绝对值不等式的解法、不等式解集的概念、绝对值的意义等基础知识,考查
抽象概括能力、运算求解能力,考查分类与整合的思想,转化与化归的思想,体现基础性与
综合性,导向对发展逻辑推理、数学运算、直观想象等核心素养的关注.
【试题简析】
解法一:(1)
4 2 , 1,
( ) 2, 1 3,
2 4, 3,
xx
f x x
xx
·············································································· 2 分
其图象如下图所示:
当 1x 时,由 4 2 3x,得 1
2x , ······························································· 3 分
当 3x 时,由 2 4 3x ,得 7
2x , ······························································ 4 分
所以不等式的解集为 17+22(-,)( , ).·························································· 5 分
注:不作图象,不扣分数.
(2)关于 x 的不等式
2 36() mmfx m
的解集非空,等价于
2
min
36() mmfx m
, ······ 6 分
由( 1)得 min ( ) 2fx ,(或由| 1| | 3| | ( 1) ( 3) | 2x x x x )(当13x时取等号)
所以原命题成立的等价条件为
2 362mm
m
. ················································ 7 分
当 0m 时, 22 3 6m m m ,解得 16mm 或 ,得 6m , ························ 8 分
当 0m 时, 22 3 6m m m ,解得 16m ,得 10m , ······················· 9 分
所以 m 的取值范围为 1,0 6, .···························································· 10 分
解法二:(2)考察 的图象,可知“关于 的不等式 的解集市质检数学(理科)试题答题分析 第 17 页(共 17 页)
非空”等价于“
2 362mm
m
”. ··································································· 7 分
下同解法一.