福建泉州市2019届高三理科数学3月质检试卷(有解析)
加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
市质检数学(理科)试题答题分析 第 1 页(共 17 页) 准考证号________________ 姓名________________ (在此卷上答题无效) 保密★启用前 泉州市 2019 届普通高中毕业班第一次质量检查 理 科 数 学 本试卷共 23 题,满分 150 分,共 5 页.考试用时 120 分钟. 三、解答题:共 70 分.解答应写出文字说明,证明过程或演算步骤.第 17~21 题为必考题,每个试题考 生都必须作答.第 22、23 题为选考题,考生根据要求作答. (一)必考题:共 60 分. 17.( 12 分) 已知数列 na 的前 n 项和 nS 满足 12nnS a a,且 1a , 2S , 2 成等差数列. (1)求 na 的通项公式; (2)若 22 lognnba ,数列 nb 的前 n 项和为 nT ,比较 nS 与 nT 的大小. 【命题意图】本小题主要考查数列的递推关系、等比数列的定义、等差数列、等比数列的通项公式与前 n 项和等基础知识,考查运算求解、逻辑推理能力,考查函数与方程思想、化归与转化思想等, 体现基础性和综合性,导向对发展逻辑推理、数学运算等核心素养的关注. 【试题简析】(1)法一:因为 12nnS a a ① 所以 1 1 12nnS a a ② ·································································· 1 分 由②-①,可得 11n n na a a   即 1 1 2 n n a a   , ·············································· 2 分 所以 na 是公比为 1 2 的等比数列, ································· 2 分(这步跳过不扣分) 又 1a , 2S , 2 成等差数列,所以 2122Sa,······························ (概念分)3 分 即 1 1 1 1222a a a   ,解得 1 1a  , ························································ 4 分 故数列 na 的通项公式 1 1 2n na  . ··························································· 6 分 法二: , , 成等差数列,所以 , ······································ 1 分 市质检数学(理科)试题答题分析 第 2 页(共 17 页) 即 1 1 1 1222a a a   ,解得 1 1a  , ························································ 2 分 由 12nnS a a,得 12 2 ( 2)nnS S n   , ················································· 3 分 进而求得 12(1 ( ) )2 n nS  , ········································································· 5 分 再由 (或由 ),求得 1 1 2n na  . ···························· 6 分 法三(参考给分意见):求得 , ··························································· 2 分 再求 2 1 2a  , 3 1 4a  , ······························································································· 3 分 所以数列 na 的通项公式 . ··································· (归纳猜想分)4 分 再进行证明,可再得 2 分. (2)因为  221 12 log 2 log 2 1 12nn nb a n n         , ············ (对数运算分)7 分 所以    2 1 3 22n n n n nT   , ········································· (求和公式分)9 分 又 1 1 1222nnnS a a     , ········································································ 10 分 因为 *nN ,所以 2nT  , 2nS  , ···························································· 11 分 因此 nnTS . ··························································································· 12 分 18.( 12 分) 如图,四棱锥 A BCDE 中,BE 平面 ABC ,BE CD∥ , 2AB AC BC CD BE    ,F 为 AD 的中点. (1)证明: EF  平面 ACD ; (2)求二面角 A DE C的余弦值. 市质检数学(理科)试题答题分析 第 3 页(共 17 页) 【命题意图】本题考查线面垂直的定义及判定、二面角的求解及空间向量的坐标运算等基础知识;考查空 间想象能力、推理论证及运算求解能力;考查数形结合 思想、化归与转化思想、函数与方程思想等;体现基础 性、综合性与应用性,导向对发展数学抽象、逻辑推理、 数学运算、直观想象等核心素养的关注. 【试题简析】 解法一: (1)如图,取 AB 的中点为O ,连结CO , 因为 ABC△ 为正三角形,所以CO AB , ····························································· 1 分 取 AE 中点G ,连结OG ,则OG BE∥ , 已知 BE 平面 ABC ,所以OG  平面 , ························································ 2 分 ,CO AB  平面 ,所以 ,OG CO OG AB, ·················································· 3 分 以 为坐标原点, ,,OA OG OC 的方向分别为 ,,x y z 轴的正方向建系, 设 22AB AC BC CD BE     , 则 (1,0,0), ( 1,0,0), (0,0, 3), (0,2, 3), ( 1,1,0),A B C D E 由 1 2AF AD 得 13( ,1, )22F ,所以 33( ,0, )22EF  , ················································ 4 分 ( 1,2, 3)AD  , (0,2,0)CD  , 0, 0EF AD EF CD    ,又CD AD D (相交未写暂不扣分), ···························· 5 分 所以 EF  平面 ACD . ··························································································· 6 分 (2)(用(1)的方法的,此处补给建系分 1 分) ··································································· 7 分 在(1)的基础上,计算可得 0, 0CF AD CF EF    , 市质检数学(理科)试题答题分析 第 4 页(共 17 页) 所以CF 为平面 ADE 的一个法向量, ········································································· 9 分 设平面CDE 的法向量为 =( , , )x y zm ,则 0 0 CD ED    m m , 20 30 y x y z     ,令 1x  , 得 3=(1,0, )3m 为平面 的一个法向量, ······················································ 11 分 110 622cos , 442 3 CF      m , 所以二面角 A DE C的余弦值为 6 4 . ···························································· 12 分 解法二: (1)取 AC 的中点为 H ,连结 ,BH FH , 在 Rt ACD△ 中,中位线 HF CD∥ ,且 1 2HF CD , 由已知 BE CD∥ ,且 1 2BE CD , 所以, //HF BE ,且 HF BE ,即 EFHB 为平行四边形,故 EF BH∥ . ······················ 1 分 因为 ABC△ 为正三角形,所以 BH AC ,故 EF AC . ············································· 2 分 由 BE 平面 ABC ,得 AB , BE BC , ······················································ 3 分 所以 ABE 为直角三角形,且四边形 EBCD 为直角梯形, 设 22AB AC BC CD BE     , 计算得 5AE ED,所以 EF AD , ······························································· 4 分 又由于 AC AD A , ························································································ 5 分 所以 EF  平面 ACD . ························································································ 6 分 市质检数学(理科)试题答题分析 第 5 页(共 17 页) (2)如图,取 AB 的中点为O ,连结CO , 因为 ABC△ 为正三角形,所以CO AB , 已知 BE 平面 ABC ,CO  平面 ,所以 BE CO , AB BE B ,所以CO  平面 ABE , 取 AE 中点G ,连结OG ,则OG BE∥ ,所以OG CO , 以 为坐标原点, ,,OA OG OC 的方向分别为 ,,x y z 轴的正方向建系, ··························· 7 分 则 (1,0,0), ( 1,0,0), (0,0, 3), (0,2, 3), ( 1,1,0),A B C D E 由 1 2AF AD ,得 13( ,1, )22F , 0, 0CF AD CF EF    , 所以CF 为平面 ADE 的一个法向量(也可用几何法证CF AD ,CF EF ), ············ 9 分 设平面CDE 的法向量为 =( , , )x y zm ,则 0 0 CD ED    m m , 20 30 y x y z     ,令 1x  , 得 3=(1,0, )3m 为平面CDE 的一个法向量, ························································· 11 分 110 622cos , 442 3 CF      m , 所以二面角 A DE C的余弦值为 6 4 .··································································· 12 分 解法三:(1)设 22AB AC BC CD BE     , 由 BE 平面 ABC ,得 AB , BE BC , ·········································· 1 分 所以 ABE 为直角三角形,且四边形 EBCD 为直角梯形, 市质检数学(理科)试题答题分析 第 6 页(共 17 页) 计算得 5AE ED,所以 EF AD , ··················································· 2 分 在△ AED 中, ,所以 3EF  , 在直角梯形 EBCD 中计算得 5CE  , 在△ ACD 中,计算得 2CF  , 根据勾股定理证得 EF CF ,··································································· 4 分 又由于CF AD F , ············································································ 5 分 所以 EF  平面 ACD . ············································································ 6 分 (2)同解法一、二. 19.( 12 分) 平面直角坐标系 xOy 中, ,AF分别是椭圆 22 22: 1( 0)xyE a bab    的顶点和焦点, OAF△ 为等腰 三角形, (2,1)P 在 E 上. (1)求 E 的方程; (2)若直线 :l y x m 与 交于 ,AB两点,直线 ,PA PB 分别与 x 轴交于 ,CD两点,证明: PCD△ 是等腰三角形. 【命题意图】本小题主要考查椭圆的方程、直线与圆锥曲线的位置关系等基础知识;考查运算求解、逻辑 推理能力;考查数形结合思想、转化化归思想;导向对数学运算、直观想象、逻辑推理素养 的关注. 【试题简析】 解法 1:( 1)由题意,可知点 A 为椭圆的短轴端点, 故 OAF△ 为等腰直角三角形且 90AOF, ··················································· 1 分 所以bc ,……① ····················································································· 2 分 因为 在 上,所以 22 411ab, ……②················································· 3 分 又 2 2 2a b c,……③ ··············································································· 4 分 由①②③,可得 6, 3ab, 故所求椭圆的方程为 22 163 xy. ································································ 5 分 市质检数学(理科)试题答题分析 第 7 页(共 17 页) (2)不妨设 (0, 3)A .因为 A 在直线 y x m 上,所以 3m  , ······························ 6 分 由 22 3, 1,63 yx xy    消去 y ,得 23 4 3 0xx, ···················································· 7 分 解得 0x  或 43 3x  , 故 4 3 3(0, 3), ( , )33AB, ········································································ 8 分 直线 ,PA PB 的斜率 1 1 1 1 13 22 yk x   , ························································ 9 分 2 3 1 3 1 3 13 24 3 4 2 323 k      , ···························································· 10 分 故 120kk, ··························································································· 11 分 所以 PCD PDC   , 故 PCD△ 是等腰三角形. ········································································· 12 分 解法 2:( 1)同解法 1; ·································································································· 5 分 (2)不妨设 .因为 在直线 上,所以 , ······························ 6 分 由 消去 ,得 , ······················································ 7 分 从而 1 2 1 2 43,03x x x x    , ····································································· 8 分 直线 的斜率 1 1 1 1 2 yk x   , 2 2 2 1 2 yk x   , ···················································· 9 分 则 1 2 2 1 1 2 12 1 2 1 2 1 1 ( 2)( 1) ( 2)( 1) 2 2 ( 2)( 2) y y x y x ykk x x x x              , 2 1 1 2 12 ( 2)( 3 1) ( 2)( 3 1) ( 2)( 2) x x x x xx         , 市质检数学(理科)试题答题分析 第 8 页(共 17 页) 1 2 1 2 12 2 ( 3 3)( ) 4( 3 1) ( 2)( 2) x x x x xx       , 12 43( 3 3)( ) 4( 3 1)3 ( 2)( 2)xx       , 12 (4 4)( 3 1) 0( 2)( 2)xx  , ··································································· 11 分 所以 PCD PCD   , 故 PCD△ 是等腰三角形. ··········································································· 12 分 解法 3:( 1)同解法 1; ·································································································· 5 分 (2)不妨设 (0, 3)A .因为 A 在直线 y x m 上,所以 3m  , ······························ 6 分 由 22 3, 1,63 yx xy    消去 y ,得 23 4 3 0xx, ···················································· 7 分 解得 0x  或 43 3x  , 故 4 3 3(0, 3), ( , )33AB, ········································································ 8 分 直线 ,PA PB 的斜率 1 1 1 1 13 22 yk x   , ·························································· 9 分 2 3 1 3 1 3 13 24 3 4 2 323 k      , ····························································· 10 分 直线 PA 的方程为 13 32yx,令 0y  ,得 33x  ,即 (3 3,0)C  , 直线直线 PB 的方程为 311 ( 2)2yx   , 令 ,得 13x  ,即 (1 3,0)D  , ···················································· 11 分 故 2 2 2(3 3 2) 1 (1 3) 1PC        , 22(2 1 3) 1 (1 3) 1PC        , 市质检数学(理科)试题答题分析 第 9 页(共 17 页) 所以 PC PD , 故 PCD△ 是等腰三角形. ··········································································· 12 分 解法 4:( 1)同解法 1; ·································································································· 5 分 (2)不妨设 (0, 3)A .因为 A 在直线 y x m 上,所以 3m  , ······························ 6 分 由 22 3, 1,63 yx xy    消去 y ,得 23 4 3 0xx, ···················································· 7 分 解得 0x  或 43 3x  , 故 4 3 3(0, 3), ( , )33AB, ········································································ 8 分 直线 ,PA PB 的斜率 1 1 1 1 13 22 yk x   , ·························································· 9 分 2 3 1 3 1 3 13 24 3 4 2 323 k      , ····························································· 10 分 直线 PA 的方程为 13 32yx,令 0y  ,得 33x  ,即 (3 3,0)C  , 直线直线 PB 的方程为 311 ( 2)2yx   , 令 ,得 13x  ,即 (1 3,0)D  , ···················································· 11 分 故 22 CD P xx x  ,即 P 在线段CD 的垂直平分线上, 所以 , 故 是等腰三角形. ··········································································· 12 分 20.( 12 分) 法国数学家亨利·庞加莱(JulesHenri Poincaré)是个每天都会吃面包的人,他经常光顾同一家面包店,面 包师声称卖给庞加莱的面包平均重量是 1000g,上下浮动 50g.在庞加莱眼中,这用数学语言来表达就是: 面包的重量服从期望为 1000g,标准差为 50g 的正态分布. 市质检数学(理科)试题答题分析 第 10 页(共 17 页) (1)假如面包师没有撒谎,现庞加莱从该面包店任意买 2 个面包,求其质量均不少于 1000g 的概率; (2)出于兴趣或一个偶然的念头,庞加莱每天将买来的面包称重,前 25 个数据纪录如下: 庞加莱 25 个面包质量()X 的统计数据(单位:g) 983 972 966 992 1010 1008 954 952 969 968 998 1001 1006 957 950 969 971 975 952 959 987 1011 1000 997 961 设从这 25 个面包中任取 2 个,其质量不少于1000g 的面包数记为 ,求 ()E  ; (3)庞加莱计算出这 25 个面包质量()X 的平均值 978.72X  g,标准差是 20.16g ,认定面包师在 制作过程中偷工减料,并果断举报给质检部门,质检员对面包师做了处罚,面包师也承认自己的错误,并 同意做出改正. 庞加莱在接下来的一段时间里每天都去这家面包店买面包,他又认真记录了 25 个面包的质量,并算 得它们的平均值为1002.6g ,标准差是5.08g ,于是庞加莱又一次将面包师举报了. 请你根据两次平均值和标准差的计算结果及其统计学意义,说说庞加莱又一次举报的理由. 【命题意图】本小题主要考查古典概型、分布列、期望、方差等基础知识,考查数据处理能力、应用意识 和创新意识等,考查统计与概率思想,导向对发展逻辑推理、数学运算、数学建模、数据分 析等核心素养的关注. 【试题简析】 (1)由已知可得庞加莱从该面包店购买任意一个面包,其质量不少于1000g 的概率为 1 2 , ................ 1 分 设庞加莱从该面包店购买 2 个面包,其质量不少于1000g 的面包数为 , 由已知可得 1~ (2, )2B ,( 模型识别,符号表达与文字表达均可) .................................................. 2 分 故 2 2 2 11( 2) 24PC    .(公式与计算,各 1 分) ........................................................................ 4 分 (2)25 个面包中,质量不少于1000g 的有 6 个,  的可能取值为0,1,2 ,............................................................................................................................ 5 分 2 19 2 25 171 57( 0) 300 100 CP C     ; .......................................................................................................... 6 分 11 6 19 2 25 114 19( 1) 300 50 CCP C     ; ...................................................................................................... 7 分 市质检数学(理科)试题答题分析 第 11 页(共 17 页) 2 6 2 25 15 1( 2) 300 20 CP C     , ............................................................................................................ 8 分 所以 57 19 1 24( ) 0 1 2 0.48100 50 20 50E          . ..................................................................... 10 分 (3)庞加莱经过仔细思考,认为标准差代表了面包重量的误差,可以理解成面包师手艺的精度,这个 数字在短时间内很难改变,那说明面包师取面的,这对面包师的手艺是个巨大的飞越,显然并不合理,庞 加莱断定只能是随机性出现了问题.也就是面包的来源不是随机的,而是人为设定的,最大的可能就是每 当庞加莱到来时,面包师从现有面包中挑选一个较大的给了庞加莱,而面包师的制作方式根本没有改变.面 包质量的平均值从978.72g 提高到了1002.6g 也充分说明了这一点. ..................................................... 12 分 评分说明: (1)立意解读:考查方差、标准差的统计学意义,它们在现实生活中如何被真实地应用,数学家庞加莱 给出了不错的借鉴;统计学虽然有着严谨的数学计算,但它并不是完美无缺的,所有的统计归根结底都是 一个概率问题,不是数学上 1+1=2 那么绝对,我们通过分析数据推断出的结论,永远不会是 100%正确的, 我们不可能通过数据得出完全确凿的真相,只能通过合理控制误差猜测和接近真相. (2)评分建议:指出关键词“标准差代表了面包重量的误差”,给 1 分;提到类似“短时间内误差由 20.16g 降低到了5.08g ,可能性不大”, 以“面包质量的平均值从 提高到了 ”佐证特意 挑选较大面包给庞加莱等,可再给 1 分。总之,语能达意,能体现统计学观点,即可酌情给分。 21.( 12 分) 已知函数   21 ln2f x x bx a x   的极大值点是1. (1)求实数 a 的取值范围; (2)若    0 1f x f ( 0 1x  ), 证明: 2 0a x a. 【命题意图】本题考查导数的应用,利用导数研究函数的单调性、极值、不等式证明等问题,考查推理论 证能力、运算求解能力,考查函数与方程思想、化归与转化思想、分类与整合思想,体现综 合性、应用性及创新性,导向对发展逻辑推理、数学运算、数学建模等核心素养的关注. 【试题简析】 解法一: (1)函数  fx的定义域为函数 0x  , 因为   af x x b x     , ................................................................................................................. 1 分 市质检数学(理科)试题答题分析 第 12 页(共 17 页) 所以  1 1 0f a b     得, 1ba   . .................................................................................... 2 分 此时,    21 1 ln2f x x a x a x    ,    1 af x x a x        1x x a x  . (ⅰ)当 0a  时, 0xa. 所以若01x,   0fx  ,若 1x  ,   0fx  , 故 1x  是  fx的极小值点,不满足题意; ....................................................................... 3 分 (ⅱ)当 0a  时,由   0fx  得: 1x  或 xa . ①当 1a  时,   0fx  ,  fx在 0, 单调递增,不满足题意; .......................... 4 分 ②当01a时, 若 1ax,   0fx  ,若0 xa或 1x  ,   0fx  , 故 1x  是  fx的极小值点,不满足题意; .................................................................. 5 分 ③当 1a  时, 若 01x或 xa ,   0fx  ,若1 xa,   0fx  , 故 1x  是  fx的极大值点,满足题意. ....................................................................... 5 分 (注:①②③中正确回答的前两个各占 1 分,三个共得 2 分) 综上,可得 1a  . ...................................................................................................................... 6 分 (2)由(1)知, 在区间 1, a 单调递减,在 ,a  单调递增. 又    0 1f x f ( 0 1x  ), 所以 0xa . ............................................................................ 7 分    2 0f a f x    2 1f a f ................................................................................................. 8 分 4 2 3112 ln22a a a a a a      32112ln 122a a a a a a       . 令   32112ln 122h x x x x x x      ( 1x  ), 则   2 2 3 2 11222h x x x xx       2 2 2 11( 1) ( ) 2( )22 xxxxx      市质检数学(理科)试题答题分析 第 13 页(共 17 页) 42 2 2 11( 1) 22 xxx xx     2 2 2 3 4 1( 1) 2 xxx x     2 2 1 3 1 1 02 x x x x    . ............................................................................. 10 分 所以  hx在 1,  单调递增. 因此  ha 32112ln 122a a a a a       10h. 所以    2 0 0f a f x,即    2 0f a f x . .................................................................. 11 分 因为  fx在 ,a  单调递增, 0xa , 2aa . 所以 2 0ax . 综上, 2 0a x a. ......................................................................................................................... 12 分 解法二: (1)函数  fx的定义域为函数 0x  , 因为   af x x b x     , ................................................................................................................. 1 分 所以  1 1 0f a b     得, 1ba   . .................................................................................... 2 分 此时,    21 1 ln2f x x a x a x    ,    1 af x x a x        1x x a x  . (ⅰ)因为1是  fx的极大值点, 所以在 1x  左侧的附近(左邻域),  fx   1 0x x a x 恒成立, 即存在 (01]  , ,使得对 (1 ,1]x  , 恒成立, 即对 , xa 恒成立, 即 a  (1 ,1] 内的 x 的最大值,所以 1a  . ...................................................................... 4 分 (ⅱ)因为 是 的极大值点, 市质检数学(理科)试题答题分析 第 14 页(共 17 页) 所以在 1x  右侧的附近(右邻域),  fx   1 0x x a x 恒成立, 即存在 0  ,使得对 (1,1 )x ,   1 0x x a x 恒成立, 即对 , xa 恒成立, 由 ,1x a x,得 1a  . 由于(ⅰ)、(ⅱ)同时满足,所以 . ................................................................................. 5 分 当 时,对01x,   0fx  ,对1 xa,   0fx  ,对 xa , , 即  fx在(0,1) 递增,在(1, )a 递减,在( , )a  递增, 所以 存在唯一的极大值点 1x  ,符合题意. 综上,得 1a  . ................................................................................................................................. 6 分 (二)选考题:共 10 分.请考生在第 22、23 题中任选一题作答,如果多做,则按所做的第一题计分. 22.[选修 44 :坐标系与参数方程](10 分) 在直角坐标系 xOy 中,直线 :l y kx 的倾斜角为 ,曲线 22:( 1) ( 1) 8C x y    .以坐标原点为 极点, x 轴正半轴为极轴建立极坐标系. (1)求l 和C 的极坐标方程; (2)若 与C 交于 ,AB两点,求 AO BO 的取值范围. 【命题意图】本小题主要考查直线、圆的直角坐标方程与极坐标方程的互化,极坐标极角的几何意义,直 线与圆的位置关系等基础知识,考查运算求解能力,考查函数与方程思想、转化与化归思想、 数形结合思想,体现基础性与综合性,导向对发展直观想象、逻辑推理、数学运算等核心素 养的关注. 【试题简析】 解法一:(1)直线 的极坐标方程为 ()  R ,( 未注明   R ,扣 1 分) ····························· 2 分 将 cos , sinxy   代入 222 2 6 0x y x y     中,(两公式各 1 分) ············ 4 分 得到曲线 的极坐标方程为 2 2 cos 2 sin 6 0        .(直写答案不扣中间分) 5 分 (2)设 1( , )A , 2( , )B ,则 122cos 2sin      , 12 6  , ···················· 6 分 所以 1 2 1 2|| |-| ||=|| | | ||=| |OA OB    ,····························································· 7 分 市质检数学(理科)试题答题分析 第 15 页(共 17 页) =|2cos 2sin | 2 2 | sin( ) |4      , ········································ 8 分 因为0 ,则 5 4 4 4      , 2 sin( ) 124     , ···························· 9 分 所以0 || |-| || 2 2OA OB. ·········································································· 10 分 解法二:(1)同解法一; (2)直线l 的参数方程为 cos sin xt yt      (t 为参数, ), ···································· 6 分 代入 222 2 6 0x y x y     中,得到 2 2 cos -2 sin 6 0t t t   , 所以 1 2 1 2|| |-| ||=||t | | t ||= | t +t |OA OB  , ······························································· 7 分 | 2cos +2sin | 2 2 | sin( ) |4      , ········································ 8 分 因为 ,则 , , ···························· 9 分 所以0 || | | || 2 2OA OB   . ·········································································· 10 分 解法三:(1)同解法一; (2)设曲线C 的圆心 ,半径为 r . 考察图形易知,当直线 过 时,|| |-| ||OA OB 取到最大值, ···································· 6 分 max|| |-| ||) =(r+|OC|)-(r-|OC|)=2|OC|=2 2|OA OB( . ················································ 7 分 当直线l OC 时, 取到最小值, ······················································· 8 分 min|| |-| ||) =0OA OB( . ························································································· 9 分 所以 . ········································································· 10 分 23.[选修 45 :不等式选讲](10 分) 已知函数 ( ) | 1| | 3|f x x x    . (1)求 ( ) 3fx 的解集; (2)若关于 x 的不等式 2 36() mmfx m  的解集非空,求 m 的取值范围. 市质检数学(理科)试题答题分析 第 16 页(共 17 页) 【命题意图】本小题主要考查绝对值不等式的解法、不等式解集的概念、绝对值的意义等基础知识,考查 抽象概括能力、运算求解能力,考查分类与整合的思想,转化与化归的思想,体现基础性与 综合性,导向对发展逻辑推理、数学运算、直观想象等核心素养的关注. 【试题简析】 解法一:(1) 4 2 , 1, ( ) 2, 1 3, 2 4, 3, xx f x x xx       ·············································································· 2 分 其图象如下图所示: 当 1x  时,由 4 2 3x,得 1 2x  , ······························································· 3 分 当 3x  时,由 2 4 3x ,得 7 2x  , ······························································ 4 分 所以不等式的解集为 17+22(-,)( , ).·························································· 5 分 注:不作图象,不扣分数. (2)关于 x 的不等式 2 36() mmfx m  的解集非空,等价于 2 min 36() mmfx m  , ······ 6 分 由( 1)得 min ( ) 2fx ,(或由| 1| | 3| | ( 1) ( 3) | 2x x x x        )(当13x时取等号) 所以原命题成立的等价条件为 2 362mm m  . ················································ 7 分 当 0m  时, 22 3 6m m m   ,解得 16mm  或 ,得 6m  , ························ 8 分 当 0m  时, 22 3 6m m m   ,解得 16m   ,得 10m   , ······················· 9 分 所以 m 的取值范围为   1,0 6,  .···························································· 10 分 解法二:(2)考察 的图象,可知“关于 的不等式 的解集市质检数学(理科)试题答题分析 第 17 页(共 17 页) 非空”等价于“ 2 362mm m  ”. ··································································· 7 分 下同解法一.

资料: 10.8万

进入主页

人气:

10000+的老师在这里下载备课资料