2019年高考全国Ⅱ卷真题试卷(全科6套试卷)含答案
加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
绝密★启用前 ‎2019年普通高等学校招生全国统一考试 理科数学 本试卷共5页。考试结束后,将本试卷和答题卡一并交回。‎ 注意事项:‎ ‎1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。‎ ‎2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。‎ ‎3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。‎ ‎4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。‎ ‎5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。‎ 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。‎ ‎1.设集合A={x|x2–5x+6>0},B={x|x–1b,则 A.ln(a−b)>0 B.3a0 D.│a│>│b│‎ ‎7.设α,β为两个平面,则α∥β的充要条件是 A.α内有无数条直线与β平行 B.α内有两条相交直线与β平行 ‎ C.α,β平行于同一条直线 D.α,β垂直于同一平面 ‎8.若抛物线y2=2px(p>0)的焦点是椭圆的一个焦点,则p=‎ A.2 B.3 ‎ C.4 D.8‎ ‎9.下列函数中,以为周期且在区间(,)单调递增的是 A.f(x)=│cos2x│ B.f(x)=│sin2x│ ‎ C.f(x)=cos│x│ D.f(x)=sin│x│‎ ‎10.已知α∈(0,),2sin2α=cos2α+1,则sinα=‎ A. B. ‎ C. D.‎ ‎11.设F为双曲线C:的右焦点,为坐标原点,以为直径的圆与圆 交于P,Q两点.若,则C的离心率为 A. B. ‎ C.2 D.‎ ‎12.设函数的定义域为R,满足,且当时,.若对任意,都有,则m的取值范围是 A. B. ‎ C. D.‎ 二、填空题:本题共4小题,每小题5分,共20分。‎ ‎13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为__________.‎ ‎14.已知是奇函数,且当时,.若,则__________.‎ ‎15.的内角的对边分别为.若,则的面积为_________.‎ ‎16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)‎ 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答。‎ ‎(一)必考题:共60分。‎ ‎ 17.(12分)‎ 如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.‎ ‎(1)证明:BE⊥平面EB1C1;‎ ‎(2)若AE=A1E,求二面角B–EC–C1的正弦值.‎ ‎18.(12分)‎ ‎11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.‎ ‎(1)求P(X=2);‎ ‎(2)求事件“X=4且甲获胜”的概率.‎ ‎19.(12分)‎ 已知数列{an}和{bn}满足a1=1,b1=0,,.‎ ‎(1)证明:{an+bn}是等比数列,{an–bn}是等差数列;‎ ‎(2)求{an}和{bn}的通项公式.‎ ‎20.(12分)‎ 已知函数.‎ ‎(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;‎ ‎(2)设x0是f(x)的一个零点,证明曲线y=lnx在点A(x0,lnx0)处的切线也是曲线的切线.‎ ‎21.(12分)‎ 已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为−.记M的轨迹为曲线C.‎ ‎(1)求C的方程,并说明C是什么曲线;‎ ‎(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.‎ ‎(i)证明:是直角三角形;‎ ‎(ii)求面积的最大值.‎ ‎(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。‎ ‎22.[选修4—4:坐标系与参数方程](10分)‎ 在极坐标系中,O为极点,点在曲线上,直线l过点且与垂直,垂足为P.‎ ‎(1)当时,求及l的极坐标方程;‎ ‎(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.‎ ‎23.[选修4—5:不等式选讲](10分)‎ 已知 ‎ ‎(1)当时,求不等式的解集;‎ ‎(2)若时,,求的取值范围.‎ ‎2019年普通高等学校招生全国统一考试 理科数学·参考答案 ‎1.A 2.C 3.C 4.D 5.A ‎ ‎6.C 7.B 8.D 9.A 10.B ‎ ‎11.A 12.B ‎13.0.98 14.–3 ‎ ‎15.6 16.26;‎ ‎17.解:(1)由已知得,平面,平面,‎ 故.‎ 又,所以平面.‎ ‎(2)由(1)知.由题设知≌,所以,‎ 故,.‎ 以为坐标原点,的方向为x轴正方向,为单位长,建立如图所示的空间直角坐标系D–xyz,‎ 则C(0,1,0),B(1,1,0),(0,1,2),E(1,0,1),,,.‎ 设平面EBC的法向量为n=(x,y,x),则 即 所以可取n=.‎ 设平面的法向量为m=(x,y,z),则 即 所以可取m=(1,1,0).‎ 于是.‎ 所以,二面角的正弦值为.‎ ‎18.解:(1)X=2就是10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P(X=2)=0.5×0.4+(1–0.5)×(1–0.4)=0.5.‎ ‎(2)X=4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.‎ 因此所求概率为[0.5×(1–0.4)+(1–0.5)×0.4]×0.5×0.4=0.1.‎ ‎19.解:(1)由题设得,即.‎ 又因为a1+b1=l,所以是首项为1,公比为的等比数列.‎ 由题设得,即.‎ 又因为a1–b1=l,所以是首项为1,公差为2的等差数列.‎ ‎(2)由(1)知,,.‎ 所以,‎ ‎.‎ ‎20.解:(1)f(x)的定义域为(0,1)(1,+∞).‎ 因为,所以在(0,1),(1,+∞)单调递增.‎ 因为f(e)=,,所以f(x)在(1,+∞)有唯一零点x1,即f(x1)=0.又,,故f(x)在(0,1)有唯一零点.‎ 综上,f(x)有且仅有两个零点.‎ ‎(2)因为,故点B(–lnx0,)在曲线y=ex上.‎ 由题设知,即,故直线AB的斜率.‎ 曲线y=ex在点处切线的斜率是,曲线在点处切线的斜率也是,‎ 所以曲线在点处的切线也是曲线y=ex的切线.‎ ‎21.解:(1)由题设得,化简得,所以C为中心在坐标原点,焦点在x轴上的椭圆,不含左右顶点.‎ ‎(2)(i)设直线PQ的斜率为k,则其方程为.‎ 由得.‎ 记,则.‎ 于是直线的斜率为,方程为.‎ 由得 ‎.①‎ 设,则和是方程①的解,故,由此得.‎ 从而直线的斜率为.‎ 所以,即是直角三角形.‎ ‎(ii)由(i)得,,所以△PQG的面积.‎ 设t=k+,则由k>0得t≥2,当且仅当k=1时取等号.‎ 因为在[2,+∞)单调递减,所以当t=2,即k=1时,S取得最大值,最大值为.‎ 因此,△PQG面积的最大值为.‎ ‎22.解:(1)因为在C上,当时,.‎ 由已知得.‎ 设为l上除P的任意一点.在中,,‎ 经检验,点在曲线上.‎ 所以,l的极坐标方程为.‎ ‎(2)设,在中, 即.‎ 因为P在线段OM上,且,故的取值范围是.‎ 所以,P点轨迹的极坐标方程为 .‎ ‎23.解:(1)当a=1时,.‎ 当时,;当时,.‎ 所以,不等式的解集为.‎ ‎(2)因为,所以.‎ 当,时,.‎ 所以,的取值范围是.‎

资料: 7

进入主页

人气:

10000+的老师在这里下载备课资料