第五模块 分数的大小比较应用题
【教法剖析】
分数的大小比较在实际生活中经常用到,它主要包括以下三种形式:
1.同分母分数大小比较应用题。
2.同分子分数大小比较应用题。
3.分子、分母都不相同的分数大小比较应用题。
【题例教案】
例1 小明把一个蛋糕平均切成4块,小亮把同样大小的蛋糕平均切成7块,他们俩每人吃了3块,谁吃得多?
【助教解读】
此题应该把一个蛋糕看作单位“1”平均分成4份,每份是这个蛋糕的,也就是个。吃了其中的3份,也就是这个蛋糕的,吃了个蛋糕。
小明:1÷4=(个) 吃了3块,3个是个蛋糕
小亮:1÷7=(个) 吃了3块,3个是个蛋糕 因为>,所以小明吃得多。
【经验总结】
同分子分数比较大小,分母小的反而大,分母大的反而小。
例2 两根3m米的绳子,一根剪去m,另一根剪去全长的,哪根绳子剪去的部分长?
【助教解读】
第二根绳子剪去全长的,表示把第二根绳子看作单位“1”平均分成4份,剪下其中的1份。
3÷4=(m) 因为m>m,所以第二根绳子剪去的部分长。
【经验总结】
第一根绳子剪去m,在这里分数表示一个量。
第二根绳子剪去全长的,这个表示的是两个量之间的关系。
这道题里要确切理解m与全长的之间的区别。
- 3 -
例3 小明在第一个杯子中放入33g盐与55g水,第二个杯子中放入60g盐,120g水,两杯中盐完全溶解并搅拌均匀后,问:哪杯中盐水咸一些?
【助教解读】
要想知道哪杯中盐水咸一些,必须先求两杯中盐占盐水的几分之几。
第一杯: 第二杯:
因为 所以
第一杯中盐水咸一些。
【经验总结】
1.哪一杯中盐水咸一些,不能看盐多少,要看盐占水的几分之几。
2.分子、分母都不相同时,分数的大小比较要先通分。
【举一反三】
【基础题】
1.某野战营进行渡江训练,第一次用了小时,第二次用了小时,哪一次快些?
2.光明小学五年级有50人,戴近视镜的有15人,六年级有45人,戴近视镜的有10人,五年级的近视情况和六年级相比怎么样?
3.艺术节期间,学校买来一批汽球,其中红色的占,蓝色的占,紫色的占,这三种气球,哪种颜色的最多?
- 3 -
【能力题】
4.有甲、乙、丙三个射击运动员,三人各射击了30、40、50发子弹,分别打中了靶子25、36、40次,请问谁的命中率比较高一些?
参考答案
1.第二次快一些。
2.15÷50=,10÷45= 因为>
所以五年级比六年级近视情况严重。
3.
紫色的最多。
4.25÷30=,36÷40=,40÷50=
因为>>,所以乙的命中率比较高一些。
- 3 -