数学试卷参考答案及评分标准
一 、填空题
1
22.4
﹣4
4﹣2.
100°.
30
y=2x+10;
y=2x+1;
5m
5n
二 、选择题
A
B
B
C
A
B
C
C
B
A
三 、解答题
解:5÷﹣3+2
=﹣+4
=8.
解:(1)将样本数据适当分组,制作频数分布表:
分 组
[50,59]
[60,69]
[70,79]
[80,89]
[90,100]
频 数
5
10
15
6
4
故答案为:[50,59],[60,69],[70,79],[80,89],[90,100],5,10,15,6,4;
(2)根据频数分布表,绘制频数直方图:
(3)从图可以看出,这40名学生的成绩都分布在50∽100分范围内,分数在70﹣80之间的人数最多.
解:(1)因为点A(2,0)在函数y=kx+3的图象上,
所以 2k+3=0
解得
函数解析式为.
(2)在中,令y=0,
即
得 x=2,
令 x=0,得 y=3,
所以,函数图象与x轴、y轴分别交于点A(2,0)和B((0.3)
函数图象与坐标轴围成的三角形即△AOB,.
(1)证明:延长CE交AB于点G,
∵AE⊥CE,
∴∠AEG=∠AEC=90°,
在△AEG和△AEC中,
∴△AGE≌△ACE(ASA).
∴GE=EC.
∵BD=CD,
∴DE为△CGB的中位线,
∴DE∥AB.
∵EF∥BC,
∴四边形BDEF是平行四边形.
(2)解:BF=(AB﹣AC).
理由如下:
∵四边形BDEF是平行四边形,
∴BF=DE.
∵D、E分别是BC、GC的中点,
∴BF=DE=BG.
∵△AGE≌△ACE,
∴AG=AC,
∴BF=(AB﹣AG)=(AB﹣AC).
解:(1)根据商场的规定,
当0<x≤5时,y=20x,
当x>5时,y=20×5+(x﹣5)×20×0.7=100+14(x﹣5),
所以,货款y (元)与购买数量x (件)之间的函数关系是(x是正整数);
(2)当x=3时,y=20×3=60 (元)
当x=6时,y=100+14×(6﹣5)=114 (元).
解:如图,∵AD是BC边的中线,BC=16cm,
∴BD=DC=8cm,
∵AD2+BD2=152+82=172=AB2,
∴∠ADB=90°,
∴∠ADC=90°,
在Rt△ADC中,
AC==17cm.
∴AC=AB,即△ABC是等腰三角形.
(1)证明:∵DE=EF,AE⊥DP,
∴AF=AD,
∴∠AFD=∠ADF,
∵∠ADF+∠DAE=∠PAE+∠DAE=90°,
∴∠AFD=∠PAE,
∵AG平分∠BAF,
∴∠FAG=∠GAP.
∵∠AFD+∠FAE=90°,
∴∠AFD+∠PAE+∠FAP=90°
∴2∠GAP+2∠PAE=90°,
即∠GAE=45°,
∴△AGE为等腰直角三角形;
(2)证明:作CH⊥DP,交DP于H点,
∴∠DHC=90°.
∵AE⊥DP,
∴∠AED=90°,
∴∠AED=∠DHC.
∵∠ADE+∠CDH=90°,∠CDH+∠DCH=90°,
∴∠ADE=∠DCH.
∵在△ADE和△DCH中,
,
∴△ADE≌△DCH(AAS),
∴CH=DE,DH=AE=EG.
∴EH+EG=EH+HD,
即GH=ED,
∴GH=CH.
∴CG=GH.
∵AG=EG,
∴AG=DH,
∴CG+AG=GH+HD,
∴CG+AG=(GH+HD),
即CG+AG=DG.
解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)
=140x+6000,
其中700x+100(100﹣x)≤40000,
得x≤50,
即y=140x+6000,(0<x≤50);
(2)令y≥12600,
则140x+6000≥12600,
∴x≥47.1,
又∵x≤50,
∴47.1≤x≤50
∴经销商有以下三种进货方案:
方案
A品牌(台)
B品牌(台)
①
48
52
②
49
51
③
50
50
(3)∵y=140x+6000,140>0,
∴y随x的增大而增大,
∴x=50时,y取得最大值,
又∵140×50+6000=13000,
∴选择方案③进货时,经销商可获利最大,最大利润是13000元.