山东省德州市2020届高三数学上学期期中试题(Word版附答案)
加入VIP免费下载

本文件来自资料包: 《山东省德州市2020届高三数学上学期期中试题(Word版附答案)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
高三数学试题 2019.11 本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分,第 I 卷 1-3 页,第 II 卷 3-4 页, 共 150 分,测试时间 120 分钟。 注意事项: 选择题每小题选出答案后。用 2B 铅笔把答题卡上对应题目的答案标号涂黑。如需改动, 用橡皮擦干净后。再选涂其它答案。不能答在测试卷上。 第 I 卷(共 52 分) 一、选择题:本大题共 10 小题,每小题 4 分,共 40 分。把正确答案涂在答题卡上。 1.设集合 A={x|y= },B={x|(x+1)(x-3)0。lnr0,lnx≥0 B. x≤0,lnx≥0 C. x>0,lnx>0 D. x>0,lnx≥0 3.若 ,则 a 的取值范围是 A.(0, ) B.( ,1) C.(0, )∪(1,+∞) D.(0, )∪( ,+∞) 4.三角函数是刻画客观世界周期性变化规律的数学模型,单位圆定义法是任意角的三角函数常 用的定义方法。是以角度(数学上最常用弧度制)为自变量,任意角的终边与单位圆交点坐标为 因变量的函数。平面直角坐标系中的单位圆指的是平面直角坐标系上,以原点为圆心,半径 为单位长度的圆。已知用 α 的终边与单位圆的交点为 P( , ),则 cos(π+α)+sin(-α)= A. B. C. D. 5.已知 a,b 为单位向量,设 a 与 b 的夹角为 。则 a 与 b-a 的夹角为 A. B. C. D. 6.已知某函数图象如图所示,则该图象所对应的函数可能是 1 x− R ∃ ∃ ∀ ∀ ∀ 1log 13a < 1 3 1 3 1 3 1 3 1 3 3 5 4 5 1 5 − 1 5 7 5 − 7 5 3 π 6 π 3 π 2 3 π 5 6 πA. B. C. D. 7.函数 的图象与 x 轴交点的横坐标构成一个公差为 的等差数 列,要得到函数 的图象,只需将函数 f(x)的图象 A.向右平移 个单位长度 B.向右平移 个单位长度 C.向左平移 个单位长度 D.向左平移 个单位长度 8.已知等比数列{an}的前 n 项和为 Sn,若 S3=7,S6=63。则数列{nan}的前 2020 项和为 A.-3+2021×22020 B.3+2019×22020 C.1+2021×22020 D.1+2019×22020 9.中华人民共和国国歌有 84 个字,37 小节,奏唱需要 46 秒,某校周一举行升旗仪式,旗杆 正好处在坡度 15°的看台的某一列的正前方。从这一列的第一排和最后一排测得旗杆顶部的 仰角分别为 600 和 300。第一排和最后一排的距离为 10 米(如图所示),旗杆底部与第一排 在同一个水平面上。要使国歌结束时国旗刚好升到旗杆顶部。升旗手升旗的速度应为(米/秒) A. B. C. D. 10.非零向量 m,n,的夹角为 ,且满足 n=λm(λ>0),向量组 x1,x2,x3 由两个 m 和-个 n 排列而成,向量组 y1,y2,y3 由-个 m 和两个 n 排列而成,若 x1·y1+x2·y2+x3·y3 所有可 能值中的最大值为 ,则 λ 的值为 A.1 B. C.3 D.4 二、多项选择题:本大题共 3 小题,每小题 4 分,在每小题给出的四个选项中,有多项符合 要求,全部选对得 4 分,选对但不全的,得 2 分,有选错的得 0 分。 11.对于实数 a,b,c,下列命题中正确的是 A.若 a>b 则 ac 2 π ( ) 2sin( )2g x x πω= − 5 12 π 5 6 π 5 6 π 5 12 π 2 3 3 23 5 3 23 7 3 23 8 3 23 3 π 25 2 m 5 3C.若 c>a>b>0,则 ; D.若 a>b, ,则 a>0,b0)有且只有三个不同的实根,则实数 T 的取值范围是 。 四、解答题:本大题共 6 小题,共 82 分。解答应写出文字说明、证明过程或演算步骤。 18.(本小题满分 12 分) 已知集合 A={x|x2-(2a-2)x+a2-2a≤0),B={x|x2-5x+4≤0}。 (1)若 A∩B=Φ。求 a 的取值范围; (2)若“x∈A”是“x∈B”的充分不必要条件,求 a 的取值范围。 19.(本小题满分 14 分) a b c a c b >− − 1 1 a b > 3 3 2 6 π 12 π 12 π 5 12 π 2 ln x x e 1 2e 2 π 3 2 1 x 2 e 1, (0,2] ( ) min{ 1, 3}, (2,4] min{ 3, 5}, (4, ] x x f x x x x x x x − ∈ = − − ∈  − − ∈ +∞如图,在四边形 ABCD 中。∠ADC= ,AD= ,sin∠BCD= ,连接 BD,3BD= 4BC。 (1)求∠BDC 的值; (2)若 BD=1,∠AEB= ,求△ABE 的面积最大值。 20.(本小题满分 14 分) 已知函数 。 (1)当 a=1 时,求函数 f(x)的单调区间; (2)是否存在实数 a,使函数 ,在(0,+∞)上单调递增?若存在,求出 a 的取值范围;若不存在,请说明理由。 21.(本小题满分 14 分) 已知数列{an}的前 n 项和 Sn 满足 2Sn=an2+an-2,且 an>0(n∈N*)。 (1)求数列{an}的通项公式; (2)着 bn= (n∈N*),记数列{bn}的前 n 项和 Tn,证明: 。 22.(本小题满分 14 分) 已知函数 f(x)=-x3+6ax2-9a2x(a∈R)。 (1)当 a=1 时,求 f(x)的极值; (2)当 a≥1 时,若 x∈[0,2]都有 f(x)≥-8,求实数 a 的取值范围。 23.(本小题满分 14 分) 某辆汽车以 x 千米/小时的速度在高速公路上匀速行驶(考虑到高速公路行车安全要求 60≤x≤ 120)时,每小时的油耗(所需要的汽油量)为 (x-k+ )升,其中 k 为常数,且 48≤k≤ 100。 (1)若汽车以 120 千米/小时的速度行驶时,每小时的油耗为 10 升,欲使每小时的油耗不超过 7.2 升,求 x 的取值范围; 2 3 π 3 2 3 3 π 21( ) 2 ln ( 2)2f x x a x a x= + − + 34( ) ( ) 9g x f x ax x= + + 5 (4 1)n n n na − 15 2nT ≥ ∀ 1 5 3600 x(2)求该汽车行驶 100 千米的油耗的最小值。

资料: 10.8万

进入主页

人气:

10000+的老师在这里下载备课资料