B
A1
B1
C1
O
C
A
x y
z
厦门市 2020 届高中毕业班 3 月线上质量检查
数学(理科)试题参考答案
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.
1—5:DBCBC 6—10:AABAB 11—12:DC
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.
13. 27 14.40 15.
12
16. ),2()2,( +−−
三、解答题: 本大题共 6 小题,共 70 分.
17.本题主要考查正弦定理、余弦定理和解三角形等知识,考查运算求解能力,考查数形结合、函数与
方程、化归与转化等数学思想.本题满分 12 分.
解:(1)因为 cos cos ( )cosb A c B c a B− = − ,
所以sin cos sin cos (sin sin )cosB A C B C A B− = − , ························ 2 分
所以sin cos sin cos 2sin cosB A A B C B+= ,
即sin( ) 2sin cosA B C B+= , ···················································· 3 分
因为在 ABC△ 中, A B C+ = − , (0, )C ,
所以sin 2sin cosC C B= ,且sin 0C ,······································ 4 分
所以 1cos 2B = , ···································································· 5 分
因为 (0, )B ,所以 3B = . ·················································· 6 分
(2)因为 22BD DC==,所以 1BD = , 2CD = , 3BC = ,
因为 的面积为33,所以 1 3 sin 3 323c =,解得 4c = , ································ 8 分
由余弦定理得 2 2 2 2 12 cos 4 2 2 4 2 2 332AD AB BD AB BD = + − = + − = , ·········· 9 分
所以 2 2 2 2 22 (2 3) 16AD BD AB+ = + = = ,即 AD BD⊥ , ··········································· 10 分
所以 2213AC AD BD= + = , ············································································ 11 分
所以 13sin 13
CDCAD AC = = . ··············································································· 12 分
18.本题主要考查直线与平面位置关系,利用空间向量法求二面角,考查空间想象能力、推理论证能力
和运算求解能力,考查数形结合思想、转化与化归思想.本题满分 12 分.
(1)证明:因为 AO ⊥ 平面 11BB C C ,所以 1AO B C⊥ , ···················································· 1 分
因为 1BC BB= ,所以四边形 11BB C C 是菱形,所以 11BC B C⊥ , ····································· 2 分
因为 1AO BC O=,所以 1BC⊥ 平面 1ABC , ··························································· 4 分
所以 1B C AB⊥ . ·································································································· 5 分
(2)因为 11AB 与平面 11BB C C 所成的角为30 , 11A B AB∥ ,
所以 AB 与平面 11BB C C 所成的角为 ,
因为 AO ⊥ 平面 11BB C C ,
所以 AB 与平面 所成的角为 ABO∠ ,
所以 =30ABO ∠ ,
令 2BC = ,则 1 =2 = 3, =1B C BO OA, ,
以O 为坐标原点,分别以 1,,OB OB OA为 ,,x y z 轴建立如图空间直角坐标系,···················· 6 分
则 (0,0,0)O , ( 3,0,0)B , 1(0,1,0)B , (0,0,1)A , 1( 3,0,0)C − ,
B C
A
D因为 111(0,0,1) ( 3,1,0) ( 3,1,1)OA OA AA OA BB= + − = −+ = + = ,
所以 1( 3,1,1)A − ,平面 11B C B 的一个法向量为 (0,0,1)OA = , ······································ 8 分
设平面 1 1 1B C A 的一个法向量为 ( , , )xzn y= ,
则 1
1
11
11
0
0
n AB
CBn
= =
,即 30
30
xz
xy
− + =
− − =
,
令 1x = ,则 3y =− , 3z = , (1, 3, 3)n = − , ················································································10 分
所以
21cos , 7| | | |
n OAn OA
n OA
= =
,
所以二面角 1 1 1A B C B−−的余弦值为 21
7− . ··························································· 12 分
19.本题考查茎叶图与直方图的应用,考查 22 列联表及离散型随机变量的分布列及数学期望等知识,
考查数据处理能力、求解运算能力,考查样本估计总体思想.本题满分 12 分.
解:(1)由题知,女生样本数据中“安全通”为 6 人,非“安全通”为 14 人,男生样本中“安全通”人数为
122010)025.0035.0( =+ 人,非“安全通”的人数为 8 人,列出 列联表如下:
·················································· 2 分
假设 0H :“安全通”与性别无关,
所以 2K 的观测值为 841.3636.322182020
)141286(40 2
−=k ,····································· 4 分
所以没有 95%的把握认为“安全通”与性别有关. ························································· 5 分
(2)由题知,随机选 1 女生为“安全通”的概率为 3.0 ,
选 1 男生为“安全通”的概率为 6.0 , ········································································· 6 分
X 的可能取值为 0,1,2,3,4,
0784.0)6.01()3.01()0( 22 =−−==XP ,
3024.0)6.01(6.0)3.01()6.01)(3.01(3.0)1( 1
2
221
2 =−−+−−== CCXP ,
2 2 1 1 2 2
22( 2) 0.3 (1 0.6) 0.3(1 0.3) 0.6(1 0.6) (1 0.3) 0.6 0.3924P X C C= = − + − − + − = ,
1944.0)6.01(6.03.06.0)3.01(3.0)3( 1
2
221
2 =−+−== CCXP ,
0324.06.03.0)4( 22 ===XP , ········································································ 9 分
所以 的分布列为
X 0 1 2 3 4
P 0.0784 0.3024 0.3924 0.1944 0.0324
···································· 10 分
所以 ( ) 0 0.0784 1 0.3024 2 0.3924 3 0.1944 4 0.0324 1.8EX = + + + + = . ·········· 12 分
20.本题主要考查轨迹方程的求法,直线与椭圆的位置关系等知识,考查运算求解能力、推理论证能力,
考查数形结合、化归转化思想.本题满分 12 分.
解:(1)设 ( , )P x y ,
因为点 P 在线段 AB 上,且| | 2| |BP PA= ,所以 3( ,0), (0,3 )2
xA B y , ······························· 2 分
男生 女生 合计
安全通 12 6 18
非安全通 8 14 22
合计 20 20 40 因为| | 3AB = ,所以 223( ) (3 ) 92
x y+=,即
2
2 14
x y+=,
所以点 P 的轨迹 的方程为 . ·································································· 5 分
(2)设 1 1 2 2( , ), ( , )M x y N x y ,
当l 的斜率存在时,设 :l y kx m=+,
由
2
2 1,4
x y
y kx m
+=
=+
得 2 2 2(4 1) 8 4 4 0k x kmx m+ + + − = , ···················································· 6 分
所以 2 2 2(8 ) 4(4 1)(4 4) 0km k m = − + − ,即 224 1 0km− + ,
2
1 2 1 222
8 4 4,4 1 4 1
km mx x x xkk
−+ = − =++
,·········································································· 7 分
因为直线 ,QM QN 的斜率之和为 2,所以 12
12
112yy
xx
+++=,
所以 12
12
( 1)( )22m x xk xx
+++=,即 2
( 1) 2221
m kmk m
+−=−
,所以 1mk=− , ······················· 9 分
当 时,满足 ,即 0 ,符合题意,
此时 :1l y kx k= + − 恒过定点(1,1) ,········································································ 10 分
当 的斜率不存在时, 12xx= , 12yy=− ,
因为直线 的斜率之和为 2,所以 1 2 2 2
1 2 2 2 2
1 1 1 1 2 2y y y y
x x x x x
+ + − + ++ = + = = ,
所以 2 1x = ,此时 :1lx= ,恒过定点 ,
综上,直线l 恒过定点 . ················································································ 12 分
21.本题考查函数的导数与函数的单调性、最值等知识,考查推理论证能力、运算求解能力,考查分类
讨论、函数与方程、化归与转化、数形结合思想.本题满分 12 分.
解:(1) ( ) e 2e ( 2)xxf x a a− = − + −
2e ( 2)e 2
e
xx
x
aa+ − −= ·············································· 2 分
( e 2)(e 1)
e
xx
x
a −+= , ············································································ 3 分
当 0a 时, ( ) 0fx , ()fx在 R 上单调递减; ····················································· 4 分
当 0a 时,由 得 2lnx a ,所以 在 2,ln a
−
上单调递减; ·················· 5 分
由 ( ) 0fx 得 2lnx a ,所以 在 2ln ,a
+
上单调递增. ··································· 6 分
综上,当 时, 在 上单调递减;
当 时, 在 上单调递减,在 上单调递增.
(2)解法一:
当
2x = 时, 22( ) e 2e ( 2) 022f a a
−
= + + − ,即 2
2
2(e ) 02 e
a
+ − ,
所以 0a , ······································································································· 7 分
令 ( ) ( ) ( 2)cos e 2e ( 2) ( 2)cosxxg x f x a x a a x a x−= − + = + + − − + , 则 ( ) e 2e ( 2) ( 2)sinxxg x a a a x− = − + − + +
2e2( 2) ( 2)sine
x
x
a a a x−= + − + + ··············· 8 分
若 2a ,则当 0,x 时, ( ) 0gx ,所以 ()gx在 0, 上单调递增;
当 ( , )x + 时, ( ) e 2e ( 2) ( 2)sin e 2e ( 2) ( 2)x x x xg x a a a x a a a−− = − + − + + − + − − +
2e 2e 4 4 4 04aa − − − − ,
所以当 [0, )x + 时, 单调递增,所以 ( ) (0) 0g x g=. ····································· 10 分
若 02a,则 (0) 2( 2) 0ga = − ,
( ) e 2e ( 2) ( 2)sin e 2e ( 2) ( 2) e 2e 4x x x x x xg x a a a x a a a a− − − = − + − + + − + − − + = − − ,
由 e 2e 4 0xxa −− − = 得 2 4 2ln 0ax a
++=,
所以 2 4 2(ln ) 0ag a
++ ,
所以 0
2 4 2(0,ln ]ax a
++ ,使得 0( ) 0gx = ,且当 0(0, )xx 时, ( ) 0gx ,
所以 在 上单调递减,
所以当 时, ( ) (0) 0g x g=,不合题意.
综上, a 的取值范围为 2a . ·············································································· 12 分
解法二:
当
2x = 时, 22( ) e 2e ( 2) 022f a a
−
= + + − ,即 2
2
2(e ) 02 e
a
+ − ,
所以 0a , ······································································································· 7 分
若 ,由(1)知: ( )fx在 2ln ,x a
+
上单调递增,
因为 ,所以 2ln 0a , 所以 在 [0, )x + 上单调递增,
所以当 时, ( ) (0) 2 ( 2)cosf x f a a x = + + . ············································· 9 分
若 ,
令 ( ) ( ) ( 2)cos e 2e ( 2) ( 2)cosxxg x f x a x a a x a x−= − + = + + − − + ,
则 ·············· 10 分
所以 ,
,
由 得 2 4 2ln 0ax a
++=,
所以 2 4 2(ln ) 0ag a
++ ,
所以 0
2 4 2(0,ln ]ax a
++ ,使得 ,且当 时, ,
所以 在 上单调递减,
所以当 时, ,不合题意.
综上, 的取值范围为 . ·············································································· 12 分 22.本题考查曲线的普通方程、参数方程、极坐标方程等知识;考查运算求解能力;考查数形结合、函
数与方程思想.满分 10 分.
(1)
2 2cos ,
2sin
x
y
=+
=
( 为参数)
曲线 1C 的普通方程为( )2 224xy− + = ,即 2240x y x+ − = ····································· 2 分
cosx = , siny = , 2 4 cos 0 −=
曲线 1C 的极坐标方程为 4cos= ······································································ 5 分
(2)依题意设 1( , )A , 2( , )B ,
由 4cos
=
=
得 1 4cos= .由 4sin
=
=
得 2 4sin= .
0 4
, 12 .
124cos 4sinAB OA OB = − = − = − . ··················································· 7 分
OM 是圆 1C 的直径,∴
2OAM =.
在直角 OAMr 中, 4sinAM = ····································································· 8 分
在直角 BAMr 中,
4AMB =
AB AM= ,即 4cos 4sin 4sin −= ··························································· 9 分
4cos 8sin= ,即 1tan 2 = . ······································································ 10 分
23.本题考查绝对值不等式的性质、解法,基本不等式等知识;考查推理论证能力、运算求解能力;
考查化归与转化,分类与整合思想.满分 10 分.
解:(1) ( ) 62f , 2 3 1 6aa + − + − ,即 3 1 4aa− + − ·································· 1 分
当 3a 时,不等式化为 3 1 4
3
aa
a
− + −
, 4a ······················································· 2 分
当13a时,不等式化为 ( ) ( )3 1 4
13
aa
a
− + −
,此时 a 无解·········································· 3 分
当 1a 时,不等式化为 ( ) ( )3 1 4
1
aa
a
− + −
, 0a ··················································· 4 分
综上,原不等式的解集为{ | 0aa 或 4}a ································································ 5 分
(2)要证 Rx , 1( ) 3 +1f x a a − − 恒成立
即证 Rx , 12sin 1 +1xa a − − − 恒成立 ······························································ 6 分
2sin x 的最小值为 2− ,只需证 12 1 +1a a− − − − ,即证 11 +1 2a a− + ···················· 8 分
又 1 1 1 1 11 +1 1 1 2 2a a a a aa a a a a− + − + + = + = + =
11 +1 2a a − + 成立,原题得证 ········································································ 10 分