福建省厦门市2020届高三数学(理)3月线上检测试题(一)(PDF版带答案)
加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
B A1 B1 C1 O C A x y z 厦门市 2020 届高中毕业班 3 月线上质量检查 数学(理科)试题参考答案 一、选择题:本大题共 12 小题,每小题 5 分,共 60 分. 1—5:DBCBC 6—10:AABAB 11—12:DC 二、填空题:本大题共 4 小题,每小题 5 分,共 20 分. 13. 27 14.40 15. 12  16. ),2()2,( +−−  三、解答题: 本大题共 6 小题,共 70 分. 17.本题主要考查正弦定理、余弦定理和解三角形等知识,考查运算求解能力,考查数形结合、函数与 方程、化归与转化等数学思想.本题满分 12 分. 解:(1)因为 cos cos ( )cosb A c B c a B− = − , 所以sin cos sin cos (sin sin )cosB A C B C A B− = − , ························ 2 分 所以sin cos sin cos 2sin cosB A A B C B+= , 即sin( ) 2sin cosA B C B+= , ···················································· 3 分 因为在 ABC△ 中, A B C+ = − , (0, )C  , 所以sin 2sin cosC C B= ,且sin 0C  ,······································ 4 分 所以 1cos 2B = , ···································································· 5 分 因为 (0, )B  ,所以 3B = . ·················································· 6 分 (2)因为 22BD DC==,所以 1BD = , 2CD = , 3BC = , 因为 的面积为33,所以 1 3 sin 3 323c =,解得 4c = , ································ 8 分 由余弦定理得 2 2 2 2 12 cos 4 2 2 4 2 2 332AD AB BD AB BD = + −   = + −    = , ·········· 9 分 所以 2 2 2 2 22 (2 3) 16AD BD AB+ = + = = ,即 AD BD⊥ , ··········································· 10 分 所以 2213AC AD BD= + = , ············································································ 11 分 所以 13sin 13 CDCAD AC = = . ··············································································· 12 分 18.本题主要考查直线与平面位置关系,利用空间向量法求二面角,考查空间想象能力、推理论证能力 和运算求解能力,考查数形结合思想、转化与化归思想.本题满分 12 分. (1)证明:因为 AO ⊥ 平面 11BB C C ,所以 1AO B C⊥ , ···················································· 1 分 因为 1BC BB= ,所以四边形 11BB C C 是菱形,所以 11BC B C⊥ , ····································· 2 分 因为 1AO BC O=,所以 1BC⊥ 平面 1ABC , ··························································· 4 分 所以 1B C AB⊥ . ·································································································· 5 分 (2)因为 11AB 与平面 11BB C C 所成的角为30 , 11A B AB∥ , 所以 AB 与平面 11BB C C 所成的角为 , 因为 AO ⊥ 平面 11BB C C , 所以 AB 与平面 所成的角为 ABO∠ , 所以 =30ABO ∠ , 令 2BC = ,则 1 =2 = 3, =1B C BO OA, , 以O 为坐标原点,分别以 1,,OB OB OA为 ,,x y z 轴建立如图空间直角坐标系,···················· 6 分 则 (0,0,0)O , ( 3,0,0)B , 1(0,1,0)B , (0,0,1)A , 1( 3,0,0)C − , B C A D因为 111(0,0,1) ( 3,1,0) ( 3,1,1)OA OA AA OA BB= + − = −+ = + = , 所以 1( 3,1,1)A − ,平面 11B C B 的一个法向量为 (0,0,1)OA = , ······································ 8 分 设平面 1 1 1B C A 的一个法向量为 ( , , )xzn y= , 则 1 1 11 11 0 0 n AB CBn  = = ,即 30 30 xz xy − + = − − = , 令 1x = ,则 3y =− , 3z = , (1, 3, 3)n = − , ················································································10 分 所以 21cos , 7| | | | n OAn OA n OA  = =  , 所以二面角 1 1 1A B C B−−的余弦值为 21 7− . ··························································· 12 分 19.本题考查茎叶图与直方图的应用,考查 22 列联表及离散型随机变量的分布列及数学期望等知识, 考查数据处理能力、求解运算能力,考查样本估计总体思想.本题满分 12 分. 解:(1)由题知,女生样本数据中“安全通”为 6 人,非“安全通”为 14 人,男生样本中“安全通”人数为 122010)025.0035.0( =+ 人,非“安全通”的人数为 8 人,列出 列联表如下: ·················································· 2 分 假设 0H :“安全通”与性别无关, 所以 2K 的观测值为 841.3636.322182020 )141286(40 2  −=k ,····································· 4 分 所以没有 95%的把握认为“安全通”与性别有关. ························································· 5 分 (2)由题知,随机选 1 女生为“安全通”的概率为 3.0 , 选 1 男生为“安全通”的概率为 6.0 , ········································································· 6 分 X 的可能取值为 0,1,2,3,4, 0784.0)6.01()3.01()0( 22 =−−==XP , 3024.0)6.01(6.0)3.01()6.01)(3.01(3.0)1( 1 2 221 2 =−−+−−== CCXP , 2 2 1 1 2 2 22( 2) 0.3 (1 0.6) 0.3(1 0.3) 0.6(1 0.6) (1 0.3) 0.6 0.3924P X C C= = − + − − + − = , 1944.0)6.01(6.03.06.0)3.01(3.0)3( 1 2 221 2 =−+−== CCXP , 0324.06.03.0)4( 22 ===XP , ········································································ 9 分 所以 的分布列为 X 0 1 2 3 4 P 0.0784 0.3024 0.3924 0.1944 0.0324 ···································· 10 分 所以 ( ) 0 0.0784 1 0.3024 2 0.3924 3 0.1944 4 0.0324 1.8EX =  +  +  +  +  = . ·········· 12 分 20.本题主要考查轨迹方程的求法,直线与椭圆的位置关系等知识,考查运算求解能力、推理论证能力, 考查数形结合、化归转化思想.本题满分 12 分. 解:(1)设 ( , )P x y , 因为点 P 在线段 AB 上,且| | 2| |BP PA= ,所以 3( ,0), (0,3 )2 xA B y , ······························· 2 分 男生 女生 合计 安全通 12 6 18 非安全通 8 14 22 合计 20 20 40 因为| | 3AB = ,所以 223( ) (3 ) 92 x y+=,即 2 2 14 x y+=, 所以点 P 的轨迹  的方程为 . ·································································· 5 分 (2)设 1 1 2 2( , ), ( , )M x y N x y , 当l 的斜率存在时,设 :l y kx m=+, 由 2 2 1,4 x y y kx m  +=  =+ 得 2 2 2(4 1) 8 4 4 0k x kmx m+ + + − = , ···················································· 6 分 所以 2 2 2(8 ) 4(4 1)(4 4) 0km k m = − + −  ,即 224 1 0km− +  , 2 1 2 1 222 8 4 4,4 1 4 1 km mx x x xkk −+ = − =++ ,·········································································· 7 分 因为直线 ,QM QN 的斜率之和为 2,所以 12 12 112yy xx +++=, 所以 12 12 ( 1)( )22m x xk xx +++=,即 2 ( 1) 2221 m kmk m +−=− ,所以 1mk=− , ······················· 9 分 当 时,满足 ,即 0 ,符合题意, 此时 :1l y kx k= + − 恒过定点(1,1) ,········································································ 10 分 当 的斜率不存在时, 12xx= , 12yy=− , 因为直线 的斜率之和为 2,所以 1 2 2 2 1 2 2 2 2 1 1 1 1 2 2y y y y x x x x x + + − + ++ = + = = , 所以 2 1x = ,此时 :1lx= ,恒过定点 , 综上,直线l 恒过定点 . ················································································ 12 分 21.本题考查函数的导数与函数的单调性、最值等知识,考查推理论证能力、运算求解能力,考查分类 讨论、函数与方程、化归与转化、数形结合思想.本题满分 12 分. 解:(1) ( ) e 2e ( 2)xxf x a a− = − + − 2e ( 2)e 2 e xx x aa+ − −= ·············································· 2 分 ( e 2)(e 1) e xx x a −+= , ············································································ 3 分 当 0a  时, ( ) 0fx  , ()fx在 R 上单调递减; ····················································· 4 分 当 0a  时,由 得 2lnx a ,所以 在 2,ln a − 上单调递减; ·················· 5 分 由 ( ) 0fx  得 2lnx a ,所以 在 2ln ,a + 上单调递增. ··································· 6 分 综上,当 时, 在 上单调递减; 当 时, 在 上单调递减,在 上单调递增. (2)解法一: 当 2x = 时, 22( ) e 2e ( 2) 022f a a − = + + −  ,即 2 2 2(e ) 02 e a    +  −  , 所以 0a  , ······································································································· 7 分 令 ( ) ( ) ( 2)cos e 2e ( 2) ( 2)cosxxg x f x a x a a x a x−= − + = + + − − + , 则 ( ) e 2e ( 2) ( 2)sinxxg x a a a x− = − + − + + 2e2( 2) ( 2)sine x x a a a x−= + − + + ··············· 8 分 若 2a  ,则当  0,x  时, ( ) 0gx  ,所以 ()gx在 0, 上单调递增; 当 ( , )x  + 时, ( ) e 2e ( 2) ( 2)sin e 2e ( 2) ( 2)x x x xg x a a a x a a a−− = − + − + +  − + − − + 2e 2e 4 4 4 04aa − −  − −  , 所以当 [0, )x + 时, 单调递增,所以 ( ) (0) 0g x g=. ····································· 10 分 若 02a,则 (0) 2( 2) 0ga = −  , ( ) e 2e ( 2) ( 2)sin e 2e ( 2) ( 2) e 2e 4x x x x x xg x a a a x a a a a− − − = − + − + +  − + − − + = − − , 由 e 2e 4 0xxa −− − = 得 2 4 2ln 0ax a ++=, 所以 2 4 2(ln ) 0ag a ++  , 所以 0 2 4 2(0,ln ]ax a ++ ,使得 0( ) 0gx = ,且当 0(0, )xx 时, ( ) 0gx  , 所以 在 上单调递减, 所以当 时, ( ) (0) 0g x g=,不合题意. 综上, a 的取值范围为 2a  . ·············································································· 12 分 解法二: 当 2x = 时, 22( ) e 2e ( 2) 022f a a − = + + −  ,即 2 2 2(e ) 02 e a    +  −  , 所以 0a  , ······································································································· 7 分 若 ,由(1)知: ( )fx在 2ln ,x a  + 上单调递增, 因为 ,所以 2ln 0a  , 所以 在 [0, )x + 上单调递增, 所以当 时, ( ) (0) 2 ( 2)cosf x f a a x = +  + . ············································· 9 分 若 , 令 ( ) ( ) ( 2)cos e 2e ( 2) ( 2)cosxxg x f x a x a a x a x−= − + = + + − − + , 则 ·············· 10 分 所以 , , 由 得 2 4 2ln 0ax a ++=, 所以 2 4 2(ln ) 0ag a ++  , 所以 0 2 4 2(0,ln ]ax a ++ ,使得 ,且当 时, , 所以 在 上单调递减, 所以当 时, ,不合题意. 综上, 的取值范围为 . ·············································································· 12 分 22.本题考查曲线的普通方程、参数方程、极坐标方程等知识;考查运算求解能力;考查数形结合、函 数与方程思想.满分 10 分. (1) 2 2cos , 2sin x y   =+  = ( 为参数) 曲线 1C 的普通方程为( )2 224xy− + = ,即 2240x y x+ − = ····································· 2 分 cosx = , siny = , 2 4 cos 0  −= 曲线 1C 的极坐标方程为 4cos= ······································································ 5 分 (2)依题意设 1( , )A , 2( , )B , 由 4cos   =  = 得 1 4cos= .由 4sin   =  = 得 2 4sin= . 0 4 , 12 .  124cos 4sinAB OA OB    = − = − = − . ··················································· 7 分 OM 是圆 1C 的直径,∴ 2OAM =. 在直角 OAMr 中, 4sinAM = ····································································· 8 分 在直角 BAMr 中, 4AMB =  AB AM= ,即 4cos 4sin 4sin  −= ··························································· 9 分  4cos 8sin= ,即 1tan 2 = . ······································································ 10 分 23.本题考查绝对值不等式的性质、解法,基本不等式等知识;考查推理论证能力、运算求解能力; 考查化归与转化,分类与整合思想.满分 10 分. 解:(1) ( ) 62f   , 2 3 1 6aa + − + −  ,即 3 1 4aa− + −  ·································· 1 分 当 3a  时,不等式化为 3 1 4 3 aa a − + −    , 4a ······················································· 2 分 当13a时,不等式化为 ( ) ( )3 1 4 13 aa a  − + −   ,此时 a 无解·········································· 3 分 当 1a  时,不等式化为 ( ) ( )3 1 4 1 aa a  − + −   , 0a ··················································· 4 分 综上,原不等式的解集为{ | 0aa 或 4}a  ································································ 5 分 (2)要证 Rx , 1( ) 3 +1f x a a − − 恒成立 即证 Rx , 12sin 1 +1xa a − − − 恒成立 ······························································ 6 分 2sin x 的最小值为 2− ,只需证 12 1 +1a a−  − − − ,即证 11 +1 2a a− +  ···················· 8 分 又 1 1 1 1 11 +1 1 1 2 2a a a a aa a a a a− +  − + + = + = +   = 11 +1 2a a − +  成立,原题得证 ········································································ 10 分

资料: 10.8万

进入主页

人气:

10000+的老师在这里下载备课资料