2020高考理科数学模拟卷(含答案)
加入VIP免费下载

2020高考模拟卷(理科数学,含答案).pdf

本文件来自资料包:《2020高考理科数学模拟卷(含答案)》

共有 1 个子文件

本文件来自资料包: 《2020高考理科数学模拟卷(含答案)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
书书书 【!"#$%(& 1')】 【!"#$%(& 2')】 ! " # $ % & ' ( ) * ( + * , - * . / 0 1 2 3 4 5 2020!"#$%&'()*+,-./ ()*+,-./0 &120 !"#$(%) &'(): 1.304,)56789:;?)@ABCD32EF. 2.G3HI2J,HKLM23NO,PQRS32ETU2V;3NWAXY.Z[\],P^_ `abO,cHXde3NWA.G3fHI2J,83NCD32EF.CDgh0Fij. 3.)hklO,8gh0>32E%mnG. %、*+,:-,. 12/,,0/, 51,. 601.20/,34567*)8,9:%);? @5. 1.opqr A={x|x(2-x)≥0},B={x|x>1},s A∩B= A.{x|x≥2} B.{x|1<x≤2} C.{x|x≤1} D.{x|0<x≤1} 2.opt# z=(6+5i)(1-2i),sDtuvw,t# zxTU;yz{ A.&%|} B.&~|} C.&|} D.&€|} 3.op k∈Z,s k>0‚# f(x)=(k+1)·x2k+1D(-!,+!)Fƒ„…†; A.‡ˆ‰7Š‹Œ B.7Š‰‡ˆ‹Œ C.‡Š‹Œ D.‰‡ˆŽ‰7Š‹Œ 4.9‘’““”•–—F˜™;š›,œqm!“ 2018žŸžL ¡、¢£¤—¥˜™u¦y§ ¨(ƒz:©ª);#«,¬“®v;¯°±: ! " # $ % & ' ( ) !* !! !" !" %% %* $% $* #% #* "% "* !% !* % * #$%!&' ( ) "! $* ## $! #" "( #) !& !# % "* "! $% $& $) !# "*!' !$ !* !! "$ $* $$ ²«³¯°±,®´kµ¶·; A.Ÿž¡u¦;y§¨Š¸{¢u¦;y§¨ B.Ÿž¹ ¡u¦y§¨;ºz# 28 C.Ÿž¹ ¢u¦y§¨;»¼’ 38 D.8 ½¡、¢£¤u¦;y§¨¾¼¿À 5.op SnÁ¼#´{an};4 nÂ>,a4=19,a2+a8=46,s a10= A.35 B.39  C.43 D.47 6.ÃÄ°x2 a2 -y2 b2 =1(a>0,b>0);ÅÆǒ槡3,ÈÉʒ 4,sË́ 槡 槡 槡 槡A.6 B.26 C.3 D.23 7.《ÍÎÏÐ》ºÑZ®Ò2:“ÓÑÔÕÖ×%Ø%Ù,ÚÖ%,ÛÖ~,Üր.ÝÞg×.Ò:Ô ¹ßàá.”¸â’:“ÓÑ 3ãÔ%äå 1001ÙæÎ.MÔLå 1Ù,ÛÔå 2Ù,•Ôå 4Ù.Òå çèéæÎJ,3ãÔ¹ŠåÀê?”’“ë”MÔå“ÀêÙì,íî“Z®xï;ðñò±,só K; k;ô’ !" !!""#!#""$ #$ ! %& #!#%& !!!'$ ' ( #!"( A.141 B.142 C.143 D.144 8.õö C:x2 a2 +y2 b2 =1(a>b>0);÷、øËyˆù’ F1,F2,ú |F1F2|=2,ûõö C;ÅÆǒ 1 2,ü F2 ;ý°þõön{ A,B£y,s△F1AB;ÿʒ A.2 B.4 C.6 D.8 9.(x+1 x+2)3!"#;xѝ#($%#Â);&#>’ A.68 B.42 C.48 D.54 10.op‚# f(x)= ex-1,x≤0, x2-2x,x{ >0,g(x)=f(x)-a,û g(x)‰'D 3¤‰(;)y,s a;*ô+, A.(-1,0)  B.[0,+!) C.(-!,-1]  D.(-!,-1]∪[0,+!) ! " # $ !! "! % & &!11.Z±xï,‘-’ 槡163;¶./ ABC-A1B1C1 º,AA1 =4,B1C∩BC1 =O,E∈uv AA1B1B,F∈uv AA1C1C,s△OEF;ÿÊ;¿Mô’ A.4 B.6 C.8 D.12 12.0‚# f(x)=emx(x2-1)-2 memx;»Mô’ A,û A<0,ú m<0,s1# m;*ô+ ,’ A.(-∞,-e) B.(-∞,-4) C.(-∞,-2) D.(-∞,-1) A、BC,:-,. 4/,,0/, 51,. 201. 13.op2¨ a=(1,1),b=(-5,2),c=2a+b,s aD c32F;45    . 14.í¶ÂÁ6#´ a{ }n ;4 nÂ>’ Sn,ú an an+1 >1,û a3+a5=20,a2a6=64,s S5=    . 15.Dý789 ABCDº,AB=AD=1,BC=2,AD∥BC,AB⊥AD,E’ AD;ºy,: BD8△ABD¯ä,; uv ABD⊥uv BCD,sу„?,@ A ω;*ô¤#    .【!"#$%(& 3')】 【!"#$%(& 4')】 ! " # $ % & ' ( D、EF,:. 701.EFGH4IJKL、MLNOPQRST.U 17~21,VWX,,07Y,XZ [W\]F.U 22、23,V*X,,XZ^_?@]F. (%)WX,:. 601. 17.(gM2Bˆ 12ˆ) op△ABCº,7 A,B,CxT;Cˆù’ a,b,c,ú cosA=3 4,4(a2+c2)=4b2+ac. (1)ë@:B=2A; (2)û ab=12,ë c;ô. 18.(gM2Bˆ 12ˆ) DE8F,¹GHPIJ;;PKLMNyO,’““” 6 ½P½¹PQ;PIš›,RSTU VWX*“ 1000=PQ;PIš›,xY#«Z®xï:  PI¨(L) [0,100) [100,200) [200,300) [300,400) [400,500) [500,600] PQ# 100 200 300 240 120 40 (1)²«FZº;#«,ç[®´\Lj]ý3±; !"#$!% !"" #"" $"" %"" &"" '"" &' ()"(""$# "(""#) "(""#% "(""#" "(""!' "(""!# "(""") "("""% " (2)ëNX^; 1000=PQ 6 PI¨;u_#; (3)û`aˆbXc;3d,DPI¨[300,400)>[400,500);NX^PQºVWX* 6T,cD è 6TºVWX* 2T„^>‘;PI#,ëeÑ 1T;PI¨D[400,500);fÇ. 19.(gM2Bˆ 12ˆ) ! " # $ % & DZ±xï;Àv‘º,€C9 ABCDCʒ 2;g9,∠BAD=60°,DM⊥uv ABCD,AN∥DM,DM=2,AN=1. (1)@h:AC∥uv BMN; (2)ëý° MCþuv BMNx=7;¶iô. 20.(gM2Bˆ 12ˆ) j™° C:x2=py(p>0);Ëy’ F(0,1),ý° l;kl7’ αúÐüy F,ý° lþj™° Cn{ £y A,B. (1)û|AB|=16,ë7 α; (2)ˆùü A,Bmj™° C;n° l1,l2,0ý° l1,l2 ;ny’ E,ý° EF;kl7’ β.hoS |α-β|p’qô,mrh!s. 21.(gM2Bˆ 12ˆ) op‚# f(x)=a x+lnx(a∈R),f(x);t‚# f′(x). (1)û h(x)=f(x)+f′(x)+1 x(2,+!)F;†‚#,ë a;*ô+,; (2)í g(x)=|(a-1)x|+f(x),x∈[1,+!),ë@:g(x)≥1. (A)*X,:. 101.`XZ2U 22、23,8a*%,]F.bcde,fghe5U%,i1. 22.(gM2Bˆ 10ˆ)【Hu 4-4:vW&þw#3ð】 opý° l;w#3ð’ x=t, y=-1+{ bt(t’w#),DxvWyy O’»y,xÉ;¶zɒ»É;» vW&º,Ä° C;3ð’ 2sinθ-ρcos2θ=0. (1)ëÄ° C;ý7vW3ð; (2)ûý° lþÄ° C¾n,ë b;ô. 23.(gM2Bˆ 10ˆ)【Hu 4-5:‰Á#H{】 op‚# f(x)=|x-m|+|x-4|(m<4). (1)û‰Á# f(x)≥4;”q’{x|x≤ 1 2| x≥ 9 2},ë m;ô. (2)ûTx∈R,f(x)+|x-4|≥1}=~,ë1# m;*ô+,.【!"#$~(& 5')】 【!"#$~(& 6')】 ! " # $ % & ' ( ) * ( + * , - * . / 0 1 2 3 4 5 2020!"#$%&'()*+,-./ ()*+,-./0 &120 !"#$(A) &'(): 1.304,)56789:;?)@ABCD32EF. 2.G3HI2J,HKLM23NO,PQRS32ETU2V;3NWAXY.Z[\],P^_ `abO,cHXde3NWA.G3fHI2J,83NCD32EF.CDgh0Fij. 3.)hklO,8gh0>32E%mnG. %、*+,:-,. 12/,,0/, 51,. 601.20/,34567*)8,9:%);? @5. 1.opqr A={0,1,2},qr B={x∈Z|x2-3x<0},s A∩B= A.{1,2} B.{0,2} C.{0,1} D.{1} 2.ût# z1,z2DtuvwTU;y{1ÉT€,ú z2=1+i,s 5z2 z1+1= A.1+i B.5-2i C.2-i D.1+3i 3.û2¨ a=(2,3),b=(-1,2),s a·(a-2b)= A.5 B.6 C.7 D.8 4.’“‚&%¤ƒ„…œ†,‡ˆ‰Š‹Œî“9 2011žxLž;žŽœ,dº 2018žŒî ; 1  8 ;Žœ,Œîk‘Z±xï.²«±9,®´€¤’“º,”•; !"#$ !%$! !"$& !%$' !%$( !%#) !%#* !"$+ !" " $"" !"" '"" )"" +"" $""" !#$%!&'" A.– 2012žä,žŽœ—ž†˜ B.2017ž;žŽœD 2016ž;™šF›“%œ C.ž½#þžŽœ=¶¾ D.s±žŸ– 2014žäžŽœ†Ê˜  5.op SnÁ¼#´{an};4 nÂ>,a3+a7=28,S11=187,s a20= A.53 B.59  C.56 D.62 6.opÃÄ° C1:y2 m2- x2 m2+3=1þ C2:x2 3-y2 2=1;¡¢°¾(,sÄ° C1;3ð’ A.y2 6-x2 9=1 B.y2 9-x2 6=1 C.y2 3-x2 6=1 D.y2 4-x2 7=1 7.¡、¢、£、¤、¥、: 6Tw˜ A、B、C¦§;¨©,dº¡、¢、£ãª=“ A¦§,¤、¥、:(Jª= “ A、B、C¤¦§,û褦§M㨏%=©=U,sxÑ;3N;G# A.18 B.20 C.24 D.36 8.‚# f(x)=x2+alnx;±|D x=1«;n°üy(0,2),s a= A.2 B.-2 C.3 D.-3 9.op P(π 12,1),Q(5π 12,-1)ˆù‚# f(x)=sin(ωx+φ)(ω>0,|φ|<π 2)±|F¾¬;¿(y>¿ y,s ωφ= A.π 2 B.-π 2 C.3π 4 D.-3π 4 10.®¯°±,²€³´±,’µ¶·¸P¹µpº»¼½D(¾ž¿xÀh,ÁÂÃKÄÅ、Ƒ、ÇÈ、 ÉÊ、ËÌÁ±N.®¯°±s®¯Í±Î=%¤¸¶39(Z± 1),dºWA’ 2,3,4,5;M±_ ’ÁÏý779,± 2P®¯°±ÃK; 2019ž5ÐÑ;±N,s–5ÐѱNºÒ*%y,³ yeÓ*9Ô5ˆˆº;fǒ !" !#$ % &&&' ( &)&* " + & * )# ! & ! # A.5 9  B.2 3  C.4 9   D.1 2 11.Z±öÕ;Ö±,A,B’öÕZvF£yD¶Ö±º;z×,dº B’xDCºy,sD³ö ÕØvF A,B£y¿Ù;ÚÛÊL’ ! ! "! " 槡 槡 槡A.5 B.6 C.3 D.3 12.op#´{an}BÜ a1=1 3,an+1= an 4an+1,s#´{anan+1};4 10Â> S10= A.8 105    B.1 13    C.10 129   D.11 141 A、BC,:-,. 4/,,0/, 51,. 201. 13.op‚# f(x)qÝD RF;ނ#,ú f(x)= 6-2x,x≤ -1, x2+7,-1<x≤0{ , s f(1 2)+f(2)=    . 14.opߨ x,yBÜ x+3y-4≥0 3x+y-4≤0 x≥{ 0 ,s y x+1;¿Mô’    . 15..Õ S-ABCº,SA,SB,SC££àý,ú SA=3,SB=4,SC=5,dáyMDâ O;âvF,sâ O ;Zv-’    . 16.opj™° y2=8x;Ëy’ F,?°þ xÉ;ny’ M,N’j™°F;%y,úBÜ 2 NF = MN ,sy Fý° MN;ÌŒ    .【!"#$~(& 7')】 【!"#$~(& 8')】 ! " # $ % & ' ( D、EF,:. 701.EFGH4IJKL、MLNOPQRST.U 17~21,VWX,,07Y,XZ [W\]F.U 22、23,V*X,,XZ^_?@]F. (%)WX,:. 601. 17.(gM2Bˆ 12ˆ) D△ABCº,7 A,B,C;TCˆù’ a,b,c,ú c+槡3 3asinB=bcosA. (1)ë7 B; (2)û b=14,△ABC;v-’ 槡153,ë△ABC;ÿÊ. 18.(gM2Bˆ 12ˆ) %ãäåæ•çT"è 4žGéA;ã䓯%”êëìíþåæ¨î¿;&ïðˆñRSm ò“0ó,YZ®ôõ: ö÷ & 1ž & 2ž & 3ž & 4ž êëìí x(Øø) 10 11 13 12 åæ¨ y(ù) 22 24 31 27 úPûy±p x,y>Ñ°?¾&. (1)ëK y{ x;°?Gü3ð ^y=^bx+^a; (2)û& 5žêëìí’ 8.5Øø,ýî& 5ž;åæ¨ y(ù);ô. w)•#:^b= ∑ n i=1 (xi-珋x)(yi-珋y) ∑ n i=1 (xi-珋x)2 = ∑ n i=1 xiyi-n珋x珋y ∑ n i=1 x2 i-n珋x2 ,^a=珋y-^b珋x 19.(gM2Bˆ 12ˆ) ! "# $ % $!opuð€C9 ABCDº,∠BAD=135°,DA=4,DC 槡=2 2,E°þ AD;ºy, ÿ: ECïð›¯,;Y Dþ E′!r,YZ±xï;€.Õ E′-ABCE. (1)@h:CE⊥uv AEE′; (2)û△AEE′ÁC79,ëuv AEE′>uv E′BCx=;"~v7;# iô. 20.(gM2Bˆ 12ˆ) íõö C:x2 a2 +y2 b2 =1(a>b>0);øËy’ F,xyy O’öÆ,ÙzÉʒzÛ;öeÓÐüõö C;£Ëy,ú³ö$ý° x+y-1=0xY;iʒ槡2. (1)ëõö C;W?3ð; (2)üqy P(2,0);ý°nõö C{£y A、B,õöF;y MBÜ →OA+→OB= →OM,hë△OAB; v-. 21.(gM2Bˆ 12ˆ) op‚# f(x)=(x2-ax+1)ex,g(x)=(x+1)e-x-1. (1)û‚# f(x)Ñ%¶%%£¤»ôy,ë1# a;+,; (2)& 0≤a≤2J,@h:Tx1,x2∈R,f(x1)≥g(x2). (A)*X,:. 101.`XZ2U 22、23,8a*%,]F.bcde,fghe5U%,i1. 22.(gM2Bˆ 10ˆ)【Hu 4-4:vW&þw#3ð】 Duvý7vW&º,opý° lü M(1,0)úkl7’5π 6,xvWyy’»y,x xÉ;¶zɒ» É'~»vW&,Ä° C;»vW3ð’ ρ=4cosθ 2sinθ 2. (1)8Ä° C;»vW3ð(’ý7vW3ð; (2)opý° lþÄ° Cn{ P,Q,ë 1 |MP|+ 1 |MQ|. 23.(gM2Bˆ 10ˆ)【Hu 4-5:‰Á#H{】 op‚# f(x)=|2x+1|. (1)ë‰Á# f(x)+f(x-1)>3;”q; (2)ûTÒâ x∈R,‰Á# f(x)+f(x+3)>a2+5a}=~,ë1# a;*ô+,.【!"#$(& 9')】 【!"#$(&10')】 ! " # $ % & ' ( ) * ( + * , - * . / 0 1 2 3 4 5 2020!"#$%&'()*+,-./ ()*+,-./0 &120 !"#$(D) &'(): 1.304,)56789:;?)@ABCD32EF. 2.G3HI2J,HKLM23NO,PQRS32ETU2V;3NWAXY.Z[\],P^_ `abO,cHXde3NWA.G3fHI2J,83NCD32EF.CDgh0Fij. 3.)hklO,8gh0>32E%mnG. %、*+,:-,. 12/,,0/, 51,. 601.20/,34567*)8,9:%);? @5. 1.íqr A={1,2,3},B={x|x2-2x+m=0},û A∩B={2},s B= A.{0} B.{2} C.{1} D.{0,2} 2.2(2-i) 1-i = A.-3-i B.3-i C.3+i D.-3+i 3.op¹Â_’¶#;Á6#´ a{ }n º,a2=1,a4a6=64,s•6 q= 槡A.4 B.3 C.2 D.2 4.op cosα=-4 5,α∈(-π,0),s tan(α-π 4)= A.-1 7 B.7 C.1 7 D.-7 5.í a,b)¿£‹ý°,s“a,b‰u𔁓a,b ln3,sóK M;ô !" !"#!$!" #!$# #$ ! %& ' #( #%$ !"#!$$" ) A.2 B.1 C.-1 D.0 8.û‚# f(x)=2sin(2x+φ)(|φ|<π 2);±|2÷u+ π 12¤ƒzÊLO{ yÉT€,s‚# f(x)D Š¿[0,π 2]F;¿Mô’ 槡A.- 3 B.-1 槡C.1 D.3 9.opÁ¼#´ a{ }n ;4 nÂ>’ Sn,Sm-1=16,Sm =25,Sm+2=49(m≥2,m∈N),s m;ô A.6 B.7 C.4 D.5 10.‚# f(x)=e x -2|x|-1;±|¸,’ !" ! " # #" $% " $" $! " %" $! " 11.Z±,Cʒ 2;¶39 ABCDº,E,Fˆù BC,CD;ºy,ÿD: AE,AF- EFS褶39¯ =%¤€v‘,; B,C,Dy!r,!rO;y0’ P,s€v‘ P-AEF.v AEFF;(’ ! " #$ % & A.1 3 B.2 3 C.3 4 D.1 12.®´€¤/2:① 槡ln5<5ln2;②lnπ> π 槡e;③2槡11 <11;④2槡3 <3,dº+/2;¤#(e’90T#; .#) A.1 B.2 C.3 D.4 A、BC,:-,. 4/,,0/, 51,. 201. 13.x(x-2)5!"#º; x4Â;&#’    . 14.op1# x,yBÜ°?1l‹Œ x≥1 x+y≥0 x-y+2≥{ 0 ,s z=2x+y;¿Mô’    . 15.Z±,op AB’ö C;%‹i,ú →AB· →AC=2,s|→AB|=    . !" # 16.op2™° C:y2=2x;Ëy’ F,üy Fˆùm£‹ý° l1,l2,ý° l1þj™° Cn{ A、B£y,ý ° l2þj™° Cn{ D、E£y,û l1 þ l2 ; l Ç ; u 3 > ’ 2,s |AB|+|DE|; ¿ M ô ’    .【!"#$(&11')】 【!"#$(&12')】 ! " # $ % & ' ( D、EF,:. 701.EFGH4IJKL、MLNOPQRST.U 17~21,VWX,,07Y,XZ [W\]F.U 22、23,V*X,,XZ^_?@]F. (%)WX,:. 601. 17.(gM2Bˆ 12ˆ) D△ABCº,cosA=槡2 10,tanB=4 3. (1)ë7 C; (2)û →BA· →BC=21,ë AC;Ê. 18.(gM2Bˆ 12ˆ) „^W3T4$5ò“%¤p(â5Û5“~6”Xc„^,³„^W3–³4VWX^“ 100=$5,„^Œîe7(â5Û5“~6”89T5Û5“~6”,ÿoYp 100Tº(â5 Û5“~6”: 60%,Œîš›ZZ: (⠉(â rî ;5 a 5 ’p(â5Û5“~6”þ?ùÑ??r h!s; (2)8F@„^xY;\Ç֒fÇ,ÿD–xÑ$5º,APVWXc;3dX* 4z$5ïðÊ ÷BC„^,0NX*; 4z$5ºD“(â”EL;T#’ X,ë X;ˆ]´-#$÷F. G:K2= n(ad-bc)2 (a+b)(c+d)(a+c)(b+d)  P(k2≥k0) 0.15 0.100 0.050 0.025 0.010 k0 2.072 2.706 3.841 5.024 6.635 19.(gM2Bˆ 12ˆ) ! " # $ % & ' Z±,D€.Õ P-ABCDº,PA⊥.v ABCD,∠BAD’ý7,AB∥CD,AD=CD =2AB,E、Fˆù’ PC、CD;ºy. (1)@h:uv APD∥uv BEF; (2)í PA=kAB(k>0),ú~v7 E-BD-C;uv7¸{ 60°,ë k;*ô+,. 20.(gM2Bˆ 12ˆ) õöÊÉøHy’ A,Fáy’ M,O’õöºÆ,F’õö;øËy,ú →MF· →FA 槡= 2-1,ÅÆÇ ’槡2 2. (1)ëõö;W?3ð; (2)ý° lnõö{ P,Q£y,’“p'Dý° l,;y Fe’△PQM;àÆ?û'D,ëKý° l ;3ð;û‰'D,?rh!s. 21.(gM2Bˆ 12ˆ) op‚# f(x)=lnx-ex+a. (1)ûÄ° f(x)Dy(1,f(1))«;n°þ xɶzÉѕÕy,ë a;*ô+,; (2)ë@:a>1-1 eJ,f(x)<-e-1. (A)*X,:. 101.`XZ2U 22、23,8a*%,]F.bcde,fghe5U%,i1. 22.(gM2Bˆ 10ˆ)【Hu 4-4:vW&þw#3ð】 Dý7vW& xOyº,ý° l;w#3ð’:x=1+tcosφ y=1+tsin{ φ (t’w#,φ∈[0,π)),xvWyy’» y,x xÉ;¶zɒ»É,'~»vW&,ö C;»vW3ð’:ρ=4cos(θ-π 3). (1)ëö C;ý7vW3ð; (2)íy P(1,1),ûý° lþö Cn{ A,B£y,ë|PA||PB|;ô. 23.(gM2Bˆ 10ˆ)【Hu 4-5:‰Á#H{】 í‚# f(x)=|x|,g(x)=|2x-2|. (1)”‰Á# f(x)>g(x); (2)û 2f(x)+g(x)>ax+1TÒâ x∈R}=~,ë1# a;*ô+,.【!"#$€(&13')】 【!"#$€(&14')】 ! " # $ % & ' ( ) * ( + * , - * . / 0 1 2 3 4 5 2020!"#$%&'()*+,-./ ()*+,-./0 &120 !"#$(6) &'(): 1.304,)56789:;?)@ABCD32EF. 2.G3HI2J,HKLM23NO,PQRS32ETU2V;3NWAXY.Z[\],P^_ `abO,cHXde3NWA.G3fHI2J,83NCD32EF.CDgh0Fij. 3.)hklO,8gh0>32E%mnG. %、*+,:-,. 12/,,0/, 51,. 601.20/,34567*)8,9:%);? @5. 1.íqr A={x|x2-x-6≥0},qr B={0,1,2,3,4},s A∩B= A.{4} B.{3,4} C.{2,3,4} D.{0,1,2,3,4} 2.opt# z1,zBÜ z1=-1-i,z1z=4,st# zDtuvwTUy;vW’ A.(2,-2) B.(-2,2) C.(2,2) D.(-2,-2) 3.Z±.v’¶39、%‹Ø.àý{.v;€.Õ;Ö±,@A³€.Õ;ýI±®´¹± º; !"# $%& '"& !"#$ !"#$ !"#$ !"#$ !" #" $" %" 4.ÃÄ°x2 a2 -y2 b2 =1(a>0,b>0);%‹¡¢°3ð’ y=3 4x,sÃÄ°;ÅÆǒ A.5 4 B.4 3 C.5 3 D.4 5 5.op7 αD&~|},û cosα=- 槡22 3 ,scos2(α 2+π 4)= A.2 3 B.1 2 C.1 3 D.0 6.op(x+1)n;!"#;¹Â&#>’ 32,s!"#º x4;&#’ A.20 B.15 C.10 D.5 ! " #$ % &7.ºJKL;#$H‰MNOPÀÿmUPQRq!,Sú8ThTQRq!ïð@h. JJ÷UJ#$HVWX“%Y“VWi±”,P#9kr;3d,ZK“QRq !;[\@h.D“VWi±”º,xi’CÊY;¶39s 4¤ŸÁ;ý779c ˜Fº¿;@¤¶39Î=.Z±,¶39 ABCD¸]`“VWi±”íî^í;_ ±`.op 4¤ý779;£ý7Cˆù’ a=30cm,b=40cm.ûM™‘aDèÍ_±`FÒá z×;Wb_Á;.s³M™‘aDº¿M¶39º;fǁ A.1 25 B.1 12 C.6 25 D.24 25 8.‚# f(x)=(x+1 x)cosxD[-3,0)∪(0,3];±|¸,’ ! "!" # $ "# ! "%" $ $ "# ! "!" $ $ "# ! "!" $ $ "# &' () *) +) 9.8‚# y=sin(2x-π 6);±|2÷u+ π 6¤ƒzÊL,xY±|TU;‚# A.DŠ¿[-π 6,π 6]Fƒ„…† B.DŠ¿[-π 6,π 6]Fƒ„…c C.DŠ¿[0,π 3]Fƒ„…† D.DŠ¿[0,π 3]Fƒ„…c 10.D△ABCº,7 A,B,C;TCˆù’ a,b,c,ú a=3,A=π 3,sinC=2sinB,s△ABC;ÿʒ 槡 槡 槡 槡A.3+23 B.3+26 C.3+33 D.3+36 11.Z±,D¶3‘ ABCD-A1B1C1D1º,y O’°þ BD;ºy,íy PD°þ CC1 F,ý° OPþuv A1BDx=;7’ α,s sinα;*ô+, ! " "! !! # $ % %! $! & A.[槡3 3,1] B.[槡6 3,1] C.[槡6 3,槡22 3 ] D.[ 槡22 3 ,1] 12.op‚# f(x)=2lnx-1(1 e<x<e2),g(x)=mx,û f(x)þ g(x);±|F'D{ý° y=0T€ ;y,s1# m;*ô+, A.[-2 e,2e) B.(-e-2,3e] C.[-2e-3 2,3e) D.(-3e-2,3e] A、BC,:-,. 4/,,0/, 51,. 201. 13.op a,b_’ƒz2¨,û|a-2b 槡|= 3,s aþ b;d7’    . 14.op1# x,yBÜ x-y≥0 x+2y-6≤0 x-3y≤{ 0 ,s z=y+2 x+1;¿¸ô    . 15.op‚# f(x)= 1+log2(2-x),x<1 2x-1,x≥{ 1 ,s f(-2)+f(log23)=    . 16.op Fj™° x2=4y;Ëy,P’j™°F;]y,úy A;vW’(0,-1),s槡2|PA|+|PF| |PF| ; ¿¸ô    .【!"#$€(&15')】 【!"#$€(&16')】 ! " # $ % & ' ( D、EF,:. 701.EFGH4IJKL、MLNOPQRST.U 17~21,VWX,,07Y,XZ [W\]F.U 22、23,V*X,,XZ^_?@]F. (%)WX,:. 601. 17.(gM2Bˆ 12ˆ) •¼ d‰’);Á¼#´{an};4 nÂ>’ Sn,û S3=9,ú a1,a2,a5=Á6#´. (1)ë#´{an};e•#; (2)í{bn-an}f’ 1,•6’ 2;Á6#´,ë#´{bn};e•#-d4 nÂ> Tn. 18.(gM2Bˆ 12ˆ) g'IÖ¦êh\i;êhjkl†V———《mn24o》{ 2005ž 6 Xp,†Vwq…r,9# Àc,sV;tuD{"À>vwxƒ;、Ñy;4z|H{|}~ÂV,m¿¸}L_úPIÖ €þ8xƒ;~m=‚I–;IֆV.¢ö《mn24o》†V΃p“%¤Õѯ;„ †V,ãÑeü¯…†Y‡ì,ˆq4ûщŠ‹kl,O£ûщŠcZ%ª–‰Š ;"ŒŽ24„;Wb(O£ŽÕãÑ%ªWb),opT4Leü;fÇM 2 3, O£Leü;fÇM 1 2. (1)ë³T†Y‡ì;fÇ; (2)í³Teü;#’ X,ëVWߨ X;ˆ]´-#$÷F. 19.(gM2Bˆ 12ˆ) !" # $ % & ' (Z±xï,D.Õ A-BCDº,△ABDþ△BCDMCʒ 2;ÁC79,E Ø. AB;ºy,üy Emuð{ AC、BD;uvˆùn. AD、CD、BC{y F、 G、H. (1)@h:€C9 EFGH’9; (2)ûuv ABD⊥uv BCD,ë~v7 A-EH-F;#iô. 20.(gM2Bˆ 12ˆ) íõö C:x2 a2 +y2 b2 =1(a>b>0);øËy’ F,øáy’ A,opõöÅÆǒ 1 2,üy Fúþ xÉà ý;ý°Nõö$Y;°þʒ 3. (1)ëõö C;3ð; (2)íüy A;ý° lþõö Cn{y B(B‰D xÉF),àý{ l;ý°þ ln{y M,þ yÉn{ y H,û BF⊥HF,ú∠MOA≤∠MAO(O’vWyy),ëý° llÇ;*ô+,. 21.(gM2Bˆ 12ˆ) op‚# f(x)= ex x2-mx+1. (1)û m∈(-2,2),ë‚# y=f(x);ƒ„Š¿; (2)û m∈(0,1 2],s& x∈[1,m+1]J,0 f(x);¿Mô’ M,g(x)=x;¿¸ô’ N,’“ Mþ N ;¸M&,mCK’“üð. (A)*X,:. 101.`XZ2U 22、23,8a*%,]F.bcde,fghe5U%,i1. 22.(gM2Bˆ 10ˆ)【Hu 4-4:vW&þw#3ð】 D»vW&º,Ä° C;»vW3ð’ ρ=2cosθ+2sinθ(0≤θ<2π),y M(1,π 2),x»y O’y y,x»É’ xÉ;¶zÉ'~uvý7vW&,opý° l: x=槡3 2t y=1+1 2{ t (t’w#)þÄ° Cn{ A, B£y. (1)û P(ρ,θ)’Ä° CFÒâ%y,ë ρ;¿¸ô,mëKJy P;»vW; (2)ë 1 |MA|+ 1 |MB|;ô. 23.(gM2Bˆ 10ˆ)【Hu 4-5:‰Á#H{】 í‚# f(x)=|x-a2|+|x+b2|(a,b∈R). (1)û a=1,b=0,ë f(x)≥2;”q; (2)û f(x);¿Mô’ 8,ë a+b;¿¸ô.【!"#$¯(&17')】 【!"#$¯(&18')】 ! " # $ % & ' ( ) * ( + * , - * . / 0 1 2 3 4 5 2020!"#$%&'()*+,-./ ()*+,-./0 &120 !"#$(j) &'(): 1.304,)56789:;?)@ABCD32EF. 2.G3HI2J,HKLM23NO,PQRS32ETU2V;3NWAXY.Z[\],P^_ `abO,cHXde3NWA.G3fHI2J,83NCD32EF.CDgh0Fij. 3.)hklO,8gh0>32E%mnG. %、*+,:-,. 12/,,0/, 51,. 601.20/,34567*)8,9:%);? @5. 1.opqr A={-1,0,1,2},B={x|(x+1)(x-2)<0},s A∩B= A.{0,1} B.{-1,0} C.{-1,0,1} D.{0,1,2} 2.í z=1-i i +2i,s|z|= 槡 槡A. 10 B.2 C.2 D.1 3.ûy P(-3,4)7 α;‘CF%y,s sin2α= A.-24 25 B.-7 25 C.16 25 D.8 5 4.’“%žº¹ ½;œ、”Kš›;ŒîZ±xï,®´rdº¶·; !! " # $ % & ' ( ) !*!!!" "#$!%& '(!%&""# (* '* &* %* $* #* "* !* # )* A.”K¿(ôþ”K¿ô;6 81 B.4F 6 ½;u_œ’ 50©ø C.ú•¿(; ½ 2 ½ D.2F 3 ½;œ;ß(¨þ 11F 12 ½;œ;ß(¨¾( 5.û|a|=1,|b|=2,|a+2b 槡|= 13,s aþ b;d7’ A.π 6 B.π 3 C.π 2 D.2π 3 6.#$–—v]#$!µÀ!;˜¸]™.1927ž¹Jš›¸$;$5)œžK%¤–—:T{L %¤¶#,Z‘ÁŸ#,TÁ  3c˜ 1;Z‘ÁÞ#,TÁ¡x 2.èc¢£,¿‘k‘MÂY 1.Z±²«)œ–—íî;%¤ðñò±,sóK; i’ !" ! #$ %& '( "!"#!!# "!$"%# " &)*& "! " ' !!!%# "!#& & + A.5 B.6 C.7 D.8 7.®´/2”•; A.‰D(%ý°F;y·q%¤uv B.££¾nú‰Õy;‹ý°·q%¤uv C.Z‘£¤uvàý,@Adº%¤uvw;ý°%qàý{¤%¤uv D.Z‘£¤uvuð,@Adº%¤uvw;ý°%quð{¤%¤uv 8.op‚# f(x)=sin(ωx+φ)(ω>0,|φ|<π 2)±|¾¬£‹T€É;ÌŒ 2π,8‚# y=f(x);± |2÷u+ π 3¤ƒzO,Y;±|{ yÉT€,s‚# y=f(x);±| A.{ý° x=2π 3T€ B.{ý° x=-2π 3T€ C.{y(2π 3,0)T€ D.{y(-2π 3,0)T€ 9.û a=4 3e 3 5,b=3 2e 2 3,c=5e-2,s A.a>b>c B.b>a>c C.b>c>a D.a>c>b 10.op‚# f(x)=2ef′(e)lnx-x e(e90T#;.#),s f(x);»¸ô’ A.2e-1 B.-1 e C.1 D.2ln2 11.D△ABCº,7 A、B、C;TCˆù’ a、b、c,Z‘ a、b、c=Á¼#´,B=30°,△ABC;v-’ 3 2,s b Á{ 槡 槡A.1+ 3 B.2+ 3 C. 槡1+ 3 2 D. 槡2+ 3 2 12.í F2ÃÄ° C:x2 a2 -y2 b2 =1(a>0,b>0);øËy,O’vWyy,ü F2 ;ý°nÃÄ°;ø”{ y P,N,ý° POnÃÄ° C{¤%y M,û |MF2|=3|PF2|,ú∠MF2N=60°,sÃÄ° C;ÅÆ Ç’ A.3 B.2 C.槡7 2 D.槡5 2 A、BC,:-,. 4/,,0/, 51,. 201. 13.(槡x-3)7 ;!"#º x3;&#’    . 14.ûߨ x,yBÜ1l‹Œ 2x-y+1≥0 3x+2y-23≤0 y-1≥{ 0 ,s z=2y-x;¿¸ô    . 15.《¥¦Ï§》º8.v’Ê39,úÑ%‹Ø.þ.vàý;€.Հ¨©”.ÿÑ%“¨©”, d¶Ö±>ØÖ±Z±xï;ý779.û³“¨©”;áyMD(%¤âvF,ú³â;Zv -’ 24π,s³“¨©”;‘-’    . ! " !"# # $"% 16.opj™° y2=2px(p>0);Ëy F(1,0),ý° l:y=x+mþj™°n{‰(;£y A,B,û 0≤m <1,s△FAB;v-;¿¸ô    .【!"#$¯(&19')】 【!"#$¯(&20')】 ! " # $ % & ' ( D、EF,:. 701.EFGH4IJKL、MLNOPQRST.U 17~21,VWX,,07Y,XZ [W\]F.U 22、23,V*X,,XZ^_?@]F. (%)WX,:. 601. 17.(gM2Bˆ 12ˆ) ¶ÂÁ6#´{an}º,û 2a1+3a2=1,a2 3=9a2a6. (1)ë#´{an};e•#; (2)í bn=log3a1+log3a2+log3a3+… +log3an,ë#´{1 bn };4 nÂ> Sn. 18.(gM2Bˆ 12ˆ) 2018ž 12  28ö,=ª«Ú"e*¬,;‡À¤®ºï]äJL,¯ŸJ(«—,èTv]: °Ð°¦b±„²³À!>Ñ!ŠâÝ.Dh*ð÷¿,«iˆ´îµD=M>ª¶£·î¿"e( ¸´ä,¹íLº 7:00-8:00,8:00-9:00£¤J¿þw¹À%»´äsª¶=M(£äÀ䚛 ¼‰5½),ª¶ÀäJ¿-dfÇZZxï: &%»´ä &~»´ä ÀäJ¿ 7:10 7:30 7:50 8:10 8:30 8:50 fÇ 0.2 0.3 0.5 0.2 0.3 0.5 ûM¾、M¿~TÀÏ ]䖪¶=M~Á,¹íe7Âª¶ÃäÄÅä;J¿ˆùÿÆ 7:00>7:20(ã)ÇÅäJ¿,‰)ÇdÁÈÉ). (1)ëM¾Åä 10ˆÊúM¿Åä 30ˆÊ;fÇ; (2)íM¿Åäx[J¿’VWߨ X,ë X;ˆ]´>#$÷F E(X). 19.(gM2Bˆ 12ˆ) Z±(1),D¯C9 BCDAEº,CD∥AB,∠BCD=90°,CD=BC=1,AB=2,△ABEx AB’lC; ÁÏý779,ÿ8△ABE: AB¯ä,;uv ABE⊥uv ABCD,Z±(2),0°þ AB;ºy’ O. !" #$ % & ! " ' ( $ % & (1)ë@:uv ABE⊥uv EOD; (2)ëuv ECDþuv ABEx=;"~v7;¸M. 20.(gM2Bˆ 12ˆ) Duvý7vW& xOyº,opqy A(-2,0)、B(2,0),M]y,úý° MAþý° MB;lÇî -’ -1 4,í]y M;Ë̒İ C. (1)ëÄ° C;3ð; (2)üqy T(-1,0);]ý° lþÄ° Cn{ P,Q£y,û S(-17 8,0),@h:→SP· →SQ’qô. 21.(gM2Bˆ 12ˆ) í‚# f(x)=lnx-ex+ax-a(a∈R). (1)& a=e-1J,ë‚# f(x);»ô; (2)û{ x;3ð f(x)=0ÑÍ%” x0,ú x0∈(n,n+1),n∈N ,ë n;ô. (A)*X,:. 101.`XZ2U 22、23,8a*%,]F.bcde,fghe5U%,i1. 22.(gM2Bˆ 10ˆ)【Hu 4-4:vW&þw#3ð】 Dý7 v W & xOyº,Ä ° C; w # 3 ð ’ x=2cosθ y=4sin{ θ(θ’ w #),ý ° l; w # 3 ð ’ x=1+tcosα y=2+tsin{ α(t’w#). (1)ë C> l;ý7vW3ð; (2)ûÄ° C$ý° lxY°þ;ºyvW’(1,2),ë l;lÇ. 23.(gM2Bˆ 10ˆ)【Hu 4-5:‰Á#H{】 í‚# f(x)=|x+1|+3|x-a|. (1)& a=1J,”‰Á# f(x)≤2x+2; (2)û{ x;‰Á# f(x)≥4+|2x-2a|}=~,ë1# a;*ô+,.【!"#$Æ(&21')】 【!"#$Æ(&22')】 ! " # $ % & ' ( ) * ( + * , - * . / 0 1 2 3 4 5 2020!"#$%&'()*+,-./ ()*+,-./0 &120 !"#$(k) &'(): 1.304,)56789:;?)@ABCD32EF. 2.G3HI2J,HKLM23NO,PQRS32ETU2V;3NWAXY.Z[\],P^_ `abO,cHXde3NWA.G3fHI2J,83NCD32EF.CDgh0Fij. 3.)hklO,8gh0>32E%mnG. %、*+,:-,. 12/,,0/, 51,. 601.20/,34567*)8,9:%);? @5. 1.opqr A={0,1},B={0,1,2},sBÜ A∪C=B;qr C;¤#’ A.4 B.3 C.2 D.1 2.op i’È#ƒz,t# z=2i+9-3i 1+i,s|z|= 槡A.2+35 B.槡202 2 C.5 D.25 3.8¡、¢£¤ÎâÏ 10“6Ð;Yˆ#«!=Z±xï;Ѽ±,s±p ! " # # $ $ # % & ' ( # ! $ ) $ ) ! # # # # ' ) ! "A.¡ÏYˆ;–# 3 B.¡、¢£ÏYˆD[30,39)ˆ#þ\ǾÁ C.¡、¢£ÏYˆ;»¼¾Á D.¢ÏYˆ;ºz# 38.5 4.%¤Ò뼄 4¤Óâ,2¤Ôâ,û–ºÒ* 2¤â,sè 2¤âºÑÔâ;fǁ A.1 3 B.4 5 C.3 5 D.2 5 5.opËyD xÉF;ÃÄ°;¡¢°3ð 2x±y=0,s³ÃÄ°;ÅÆǁ 槡 槡 槡A.6 B.5 C.2 D.3 6.op a{ }n ¶ÂÁ6#´,ú a1a8=4a5,a4þ 2a6;Á¼ºÂ’ 18,s a5= A.2 B.4 C.8 D.16 7.û l,m£‹‰(;ý°,màý{uv α,s“l⊥m”“l//α”; A.‡ˆ‰7Š‹Œ B.7Š‰‡ˆ‹Œ C.‡Š‹Œ D.‰‡ˆŽ‰7Š‹Œ 8.ŠY‚# y=sin(2x+π 4);±|,x8‚# y=cos(π 6-2x);±| A.2øu+ π 24¤ƒz B.2÷u+ π 24¤ƒz C.2øu+ π 12¤ƒz D.2÷u+ π 12¤ƒz 9.D89 ABCDº,∠ABC=π 2,AD//BC,BC=2AD=2AB=2.889 ABCDÕ ADxD;ý°Ö×%ÿ S9=;Ävx,=;àá‘;Zv-’ ! " # $ A.4π B.( 槡4+ 2)π C.6π D.( 槡5+ 2)π 10.û‚# f(x)=槡3 3x3+lnx-x,sÄ° y=f(x)Dy(1,f(1))«;n°;kl7 A.π 6 B.π 3 C.2π 3 D.5π 6 11.DCʒ 4;g9 ABCDº,∠A=60°,M’ CD;ºy,N’uv ABCDw%y,û |→AB-→NB|=|→AM -→AN|,s →AM· →AN= A.16 B.14 C.12 D.8 12.opj™° C:y2=4x;Ëy’ F,üy Fúlǒ 1;ý°þj™° Cn{ A、B£y,ûDx°þ AB’ýÛ;öF'D£y M、N,Dý° l:x+y+a=0F'D%y Q,;Y∠MQN=90°,s1# a; *ô+,’ A.[-13,3] B.[-3,1] C.[-3,13] D.[-13,13] A、BC,:-,. 4/,,0/, 51,. 201. 13.~Â#(x-1 3 槡x )4;!"#º%#’    . 14.op¶# m,nBÜ 2m+n=1,slog2mn;¿¸ô    . 15.op‚# f(x)= 2-x+1,x≤0 -槡x,x{ >0 ,s f(x+1)-9≤0;”q’    . 16.í#´ a{ }n BÜ a1=1,a2=4,a3=9,an=an-1+an-2-an-3(n∈N ,n≥4),s a2018=    . D、EF,:. 701.EFGH4IJKL、MLNOPQRST.U 17~21,VWX,,07Y,XZ [W\]F.U 22、23,V*X,,XZ^_?@]F. (%)WX,:. 601. 17.(gM2Bˆ 12ˆ) º$’RS$5;ؑÉÙþÚۑÜÝÞJ¿;&,T³4 200=($5;ÚۑÜÝÞ u_Lº*];J¿ïð„^,ZZ:(u_LºÝÞ;J¿ƒz:ˆÊ) u_LºÝÞ;J¿(ˆÊ) [0,10) [10,20) [20,30) [30,40) [40,50) [50,60) T# 20 36 44 50 40 10 8$5ö_ÚۑÜ*]J¿D[40,60)F;$5ßà’“ÚۑÜÂW”. (1)?²«F@Záº;Œî#«BC®v 2×2´âZ,meüîϒ“pÂD㔕;flj äü 0.01;4ž®>’“ÚۑÜÂW”þ?ùÑ? Úۑ܉ÂW ÚۑÜÂW rî ; < 20 110 rî【!"#$Æ(&23')】 【!"#$Æ(&24')】 ! " # $ % & ' ( (2)8F@„^xY;\Ç֒fÇ,ÿD–³4($5º,X* 3=$5,0NX*; 3=$5 º;“ÚۑÜÂW”$5T#’ X,ûLªX*;k‘¾¼å~;,ë X=2J;fÇ P(X= 2)- X;#$÷F. w)•#:k2= n(ad-bc)2 (a+b)(c+d)(a+c)(b+d),dº n=a+b+c+d. w)#«: P(K2≥k0) 0.10 0.05 0.025 0.010 0.005 0.001 k0 2.706 3.841 5.024 6.635 7.879 10.828 18.(gM2Bˆ 12ˆ) D△ABCº,7 A,B,CxT;Cˆù a,b,c,op a=6,cosA=1 8. (1)û b=5,ë sinC;ô; (2)û△ABC;v-’ 槡157 4 ,ë b+c;ô. 19.(gM2Bˆ 12ˆ) ! " # $ % & 'Z±,D€.Õ P-ABCDº,.S ABCDg9,ú PA=AD=2,∠PAD=∠BAD =120°,E,Fˆù’ PD,BD;ºy,ú EF=槡6 2. (1)ë@:uv PAD⊥uv ABCD; (2)ë"~v7 E-AC-D;#iô. 20.(gM2Bˆ 12ˆ) op AË̒ 槡25;õö E:x2 a2 +y2 b2 =1(a>b>0);øáy,y P(0,槡23),ý° PAnõö E{y B, →PB=→BA. (1)ëõö E;3ð; (2)íüy Púlǒ k;ý° lþõö En{ M、N£y(MD P、Nî¿),û€C9 MNAB;v- △PMBv-; 5æ.ëý° l;lÇ k. 21.(gM2Bˆ 12ˆ) op‚# f(x)=ex-1 2(x-a)2+4. (1)û f(x)D(-!,+!)Fƒ„…†,ë a;*ô+,; (2)û x≥0,‰Á# f(x)≥0}=~,ë a;*ô+,. (A)*X,:. 101.`XZ2U 22、23,8a*%,]F.bcde,fghe5U%,i1. 22.(gM2Bˆ 10ˆ)【Hu 4-4:vW&þw#3ð】 opö O1>ö O2;»vW3ðˆù’ ρ=4> ρ=4sinθ,Ä° θ=π 6(ρ>0)ˆùnö O1>ö O2{ A、B£y,x»y O’yy,»É’ xɶzÉ'~ý7vW&. (1)8ö O1>ö O2;»vW3ð(’ý7vW3ð; (2)opy CDö O2F,ë79 ABCv-*¿¸ôJ,y C;ý7vW. 23.(gM2Bˆ 10ˆ)【Hu 4-5:‰Á#H{】 op‚# f(x)=-|x-a|+a+2,g(x)=|x-1|+|2x+4|. (1)”‰Á# g(x)<6; (2)û'D x1、x2∈R,;Y f(x1)=g(x2)=~,ë1# a;*ô+,.书书书 !"#$[% 1    &] 2020!"#$%&'()*+,-./ '()*+,-./ &01/ !"#$%&'( !" 1.【23】B 【45】67 A={x|x(2-x)≥0}={x|0≤x≤2},B={x|x>1},89 A∩B={x|1<x≤2}.: ; B. 2.【23】D 【45】?@ABC,@# z8DEF G7(16,-7),HI%JKL,:; D. 3.【23】A 【45】k>0M,N# f(x)?(-!,+!)OPQN#,RS,f(x)?(-!,+!)OPQN#,TU V k>0,W k=0M,f(x)?(-!,+!)OPQN#,:; A. 4.【23】C 【45】XYZ[\]^、_A`FGabcd7 301、341,:;e Afg;\]hi^A`Ga bFjH#P20+28 2 =24,:;e Bfg;\]hi_A`GabFkl7 49-11=38,:;e Cmn;7io^、_pqA`FGabrl7 32,8iorl 30,:;e Dfg.:; C. 5.【23】C 【45】s1[,a2+a8=2a5=46,a5=23,>tl d=23-19=4,a10=a5+5d=23+5×4=43,: ; C. 6.【23】B 【45】ƒ„F kF…7 143,:; C. 8.【23】D 【45】67|F1F2|=2,89 F2 F†‡7(1,0),vˆ‰FŠ‹Œ7 1 2,89 a=2.:△F1ABF Ž7 4a=8. 9.【23】B 【45】67(x+1 x+2)3 =(槡x+1 槡x )6( x>0),89‘’F“e7 Cr 6(槡x)6-r(1 槡x )r= Cr 6x 6-r 2 x-r 2 =Cr 6x3-r,Z[” r=0,1,2,3M,w•–’,—#˜7 C0 6+C1 6+C2 6+C3 6 =1+6+15+20 =42.!"#$[% 2    &] 10.【23】D 【45】™„N# f(x)= ex-1,x≤0, x2-2x,x{ >0 FšK,67 g(x)›œ? 3q›FžG,89 y=f(x) FšKŸ ¡ y=a›œ? 3q›Ft¢G,89 aF£…¤¥P(-!,-1]∪[0,+!). 11.【23】B 【45】V=槡3 4×AB2 槡×4=163,4w AB=4, O¦I§B ABB1A1˜ ACC1A1FD¨Gcd7 Q,R,©ª QR,>” E,F,Q,R¢¡M,△OEFFŽ«¬.sI?m‚® ABC-A1B1C1 j, G OP BC1Ÿ B1CF¯G,89G OP§B BCC1B1 Fj‹,:△OEFŽ«¬M,E,Fcd 7§B ABB1A1˜ ACC1A1Fj‹,89△OEFŽ«¬…7 6,:; B. 12.【23】C 【45】 a? c¿ÀOFÁÂPa·c c = -3+4 (-3)2+4槡 2 =1 5. 14.【23】124 【45】s a3+a5=20, a2a6=64{ , w a3+a5=20, a3a5=64{ ,4w a3=16, a5{ =4à a3=4, a5=16{ .67 an an+1 >1,89 an >an+1, u#Ä a{ }n 7ÅÆ#Ä,: a3=16, a5=4{ .ÇÈ#Ä a{ }n FtÈ7 q,> q2=a5 a3 =1 4.67#Ä7m!"#$[% 3    &] e#Ä,: q=1 2,É» a1=64,89 an=a1qn-1=64×(1 2) n-1 ,S5= 64×[1-(1 2)5] 1-1 2 =124. 15.【23】90° 【45】ÏB ¡ BEŸ CDÐ90°Ñ. 16.【23】3 【45】f(x)=2sin(ωx+φ)F«¬mÒ7 T=2π ω,» f(π 4)=2,f(π)=0,89 π-π 4=2n-1 4 T=2n-1 2ω π,u ω=4n-2 3 ,n∈N .v67 f(x)?(π 4,π 3)OÓVÔÕÖ,89 π 3-π 4≤ T 2=π ω, 4w 0<ω≤12,É» ωZ9£ 2,6,10,¢ 3q. 17.4:(1)a2+c2-b2 2ac =1 8=cosB, cos2A=2cos2A-1=2×(3 4)2-1=1 8=cosB, 67 B,2A∈(0,π),: B=2A.(5c) (2) PQ∥DM,v AN∥DM,89 PQ∥AN,(2c) 67 PQ=1 2DM=1,AN=1, 89JòË PQANPAyJòË,> AQ∥PN,(3c) 67 PNAB BMN,AQAB BMN, 89 AQ∥AB BMN,u AC∥AB BMN.(4c) (2)£ ADFjG O,©ª BO,> BO⊥AD,ów BO 槡= 3, 67 DM⊥AB ABCD,89AB ADMN⊥AB ABCD, 89 BO⊥AB ADMN.(5c) ! " # $ % & ' ( ) * + , ôõWš8ÞFöâ Ñ†‡—,> O(0,0,0),B(槡3,0,0),C(槡3,2,0),M(0, 1,2),N(0,-1,1).(6c) 89 →MB=(槡3,-1,-2),→MN=(0,-2,-1),→MC=(槡3,1,-2).(7c) AB BMNF}q÷Àb7 m=(x,y,z), > →MB·m=0 →MN·m{ =0 ,u 槡3x-y-2z=0 -2y-z{ =0 ,(9c) £ y=-1,w x 槡= 3,z=2,89 m=(槡3,-1,2).(10c)  ¡ MCŸAB BMN8ÐÑ7 θ, > sinθ=|cos〈→MC,m〉|=|→MC·m| |→MC||m| =|3-1-4| 槡8·槡8 =1 4.(12c) 20.4:(1)søù¡ x2=py(p>0)FúG7 F(0,1),Zw p=4,(1c) 89øù¡ CF¿{7 x2=4y.  ¡ lF¿{7 y=kx+1(k=tanα),ûü x2=4y,ýþ x, w y2-(2+4k2)y+1=0, A(x1,y1),B(x2,y2),> y1+y2=2+4k2,(3c) 89|AB|=y1+y2+p 2=2+4k2+2=16,(4c) w k2=3,k 槡=± 3,89 tanα 槡=± 3,> α=π 3à α=2π 3.(5c) (2) ¡ l¿{7 y=kx+p 4(k=tanα),A(x1,x2 1 p),B(x2,x2 2 p),(6c) ÿ ¡ lF¿{ y=kx+p 4ûü x2=py,ýþ y,w x2-pkx-p2 4=0,!"#$[% 5    &] > x1+x2=pk①,x1x2=-p2 4②.(7c) s y=x2 pß!,w y′=2 px, 89 ¡ l1,l2F"Œcd7 k1=2x1 p,k2=2x2 p,(8c) > l1,l2F¿{cd7 y=2x1 px-x2 1 p③,y=2x2 px-x2 2 p④,(9c) 4③、④ÛÐF¿{Û,#³①、②,w x=pk 2,y=-p 4,u E(pk 2,-p 4),(10c) 67 F(0,p 4),89 kEF = -p 4-p 4 pk 2 =-1 k,89 kEF·k=-1,89 EF⊥l.(11c) 89|α-β|=90°7$….(12c) 21.4:(1)f(x)=a x+lnx,f′(x)=-a x2 +1 x,(1c) > h(x)=f(x)+f′(x)+1 x=-a x2 +a x+2 x+lnx,(2c) h′(x)=2a x3 -a x2 -2 x2 +1 x=x2-2x+2a-ax x3 =(x-a)(x-2) x3 ,(3c) g′(x)≥0,89 g(x)?[1,+∞)OÔÕÅQ, 89 g(x)≥g(1)=1.(6c) ” a>1M,g(x)=(a-1)x+a x+lnx, g′(x)=(a-1)-a x2 +1 x=(a-1)x2+x-a x2 , ° g′(x)=0,u(a-1)x2+x-a=0,w x=1à x= a 1-a<0,(7c) >” x≥1M,g′(x)≥0,89 g(x)?[1,+∞)OÔÕÅQ, 89 g(x)≥g(1)=a-1+a=2a-1≥1.(8c) ” a<1M,g(x)=(1-a)x+a x+lnx, g′(x)=(1-a)-a x2 +1 x=(1-a)x2+x-a x2 , 67 x≥1,a<1,89 g′(x)>0,89 g(x)?[1,+∞)OÔÕÅQ, 89 g(x)≥g(1)=1-a+a=1.(11c) ¼O,” x∈[1,+∞)M,g(x)≥1.(12c)!"#$[% 6    &] 22.4:(1)67 2sinθ-ρcos2θ=0, 89 2ρsinθ-ρ2cos2θ=0,(2c) ûü ρsinθ=y, ρcosθ=x{ ,w 2y-x2=0,u x2=2y. :&¡ CF Ñ†‡¿{P x2=2y.(5c) (2)s x=t, y=-1+bt{ ,w y=-1+bx,(6c) 'õ y=-1+bx, x2=2y{ , ýþ y,w x2-2bx+2=0,(8c) w Δ=(-2b)2-4×2=0,4w b 槡=± 2.(10c) 23.4:(1)s1= f(1 2)=4 f(9 2){ =4 , u |1 2-m|+7 2=4 |9 2-m|+1 2{ =4 , 4w m=1.(5c) (2)›Ç’ f(x)+|x-4|≥1%Ðõ,u|x-m|+|x-4|≥ -|x-4|+1%Ðõ, sšKZ[ f(x)=|x-m|+|x-4|? x=4(£w«¬… 4-m,(8c) » -|x-4|+1? x=4(£w«º… 1,: 4-m≥1,w m≤3.(10c)!"#$[% 7    &] !# 1.【23】A 【45】67 B={x∈Z|0<x<3}={1,2},v A={0,1,2},89 A∩B={1,2}.:; A. 2.【23】D 【45】∵z2=1+i,z1=1-i,: 5z2 z1+1=5+5i 2-i=1+3i. 3.【23】A 【45】∵Àb a=(2,3),b=(-1,2),∴a-2b=(2,3)-(-2,4)=(4,-1),∴a·(a-2b) =8-3=5,:; A. 4.【23】B 【45】ɚËZ9)„,É 2012]Í,]*+ü,]Q-,PmnF;]o#Ÿ]*+üÐmr ¦,PmnF;É 2014]Í]*+üQŽ-.,PmnF;2017]F]*+üÈ 2016]Q-/ 40001,2±V3}4,89;e BPfgF. 5.【23】B 【45】s1[, a3+a7=2a1+8d=28 S11=11a1+d 2{ ×11×10=187 ,4w a1=2 d{ =3 ,89 a20 =2+(20-1)×3 =59,: ; B. 6.【23】A 【45】C2F56¡¿{7 y=±槡6 3x,C1F56¡¿{7 y=± m槡 2 m2槡 +3 x,u 2 3= m2 m2+3,∴m2=6. 7.【23】C 【45】7 A89?^、_、:‚áj;}á,>8VF¶·7 C1 3A2 3=18é;7 A89›?^、_、 :‚áj;}á,>8VF¶·7 A3 3=6é,:8VF¿3V 24é,:; C. 8.【23】D 【45】f′(x)=2x+a x,” x=1M,;G7(1,1),"Œ k=f′(1)=2+a,89;¡¿{7 y-1 =(2+a)(x-1),67;¡Â?cjF š3Psš 1jF‡@7 4,5,15,3,13ÛÐF,êj‡@7 4Ÿ 5Fš3ÛÐ}qòŽ7 2F!"#$[% 8    &] m¿Ë,êB=7 4;‡@7 15Fš3ZA7Ž7 4、B7 2FŽ¿ËB=}C,uB=7 4;‡ @7 3F‚ÑËB=7 1 2×4×2=4;‡@7 13Fš3ZA7Ž7 4,B7 2FŽ¿ËB=} C,uB=7 4,89>Â?cB=7 S> =4×4=16.sDEïFFïŒt’w8ßïŒ7 P =S> S =16 36=4 9.:; C. 11.【23】A 【45】s‚AšZ[ A,B?‰G¹BFHHWš,‰GFIBCJ7 r=1,'7 h 槡= 3,K¡ l =2,‰G§B‘š‰‹Ñ72πr l =π,:§B‘š7C‰.?‘šjZß A,BpG«L FMJŽÙ7槡5,:; A. ! !"" # $ %! & ' $ % 12.【23】C 【45】67 an+1= an 4an+1,89 1 an+1 -1 an =4,89#Ä{1 an }PNe7 3、tl7 4FÇl#Ä, 89 1 an =4n-1,89 an= 1 4n-1,89 anan+1 = 1 (4n-1)(4n+3) =1 4( 1 4n-1- 1 4n+3),89 S10=1 4(1 3-1 7)+1 4(1 7-1 11)+… +1 4(1 39-1 43)=10 129,:; C. 13.【23】69 4 【45】f(1 2)+f(2)=f(-1 2)+f(-2)=(-1 2)2+7+6-2×(-2)=69 4. 14.【23】1 2 ! " # $ % & !!"&#$ "!!&#$ ' 【45】™ „ › Ç ’ Û ¹ Þ F A B O P,W š j >  ? c 8 Þ,ê j A(0,4 3),B(1,1),C(0,4), y x+1¹ÞG(x,y)Ÿ$G D(-1,0)©¡F" Œ, ¡"Œ«¬7 1-0 1-(-1)=1 2. 15.【23】50π 【45】s SA,SB,SCppQ ,'RŽ¿S,T׎¿SUªV J7êSDÑ¡ŽZwV  J7 槡 槡9+16+25= 50,∴SV =4π×50 4=50π. 16.【23】 槡23!"#$[% 9    &] 【45】søù¡ y2 =8x,Zw MF =4,G N•W¡F܊7 d.søù¡$XZw d= NF ,672 NF = MN ,s1=w cos∠NMF= d MN = NF MN =1 2,89 sin∠NMF= 1-(1 2)槡 2 =槡3 2.89G F• MNF܊7 MF sin∠NMF=4×槡3 2 槡=23. 17.4:(1)s c+槡3 3asinB=bcosAYmZ$!Zw sinC+槡3 3sinAsinB=sinBcosA, u sin(A+B)+槡3 3sinAsinB=sinBcosA,(3c) –!w sinA(cosB+槡3 3sinB)=0, 67 0<A<π,sinA≠0,89 cosB+槡3 3sinB=0,tanB 槡=- 3,B=2π 3.(6c) (2)s B=2π 3Y△ABCFB=7 槡153,w 1 2acsin2π 3 槡=153,89 ac=60. s B=2π 3,b=14, w142=a2+c2-2accos2π 3 =a2+c2+ac=(a+c)2-ac=(a+c)2-60, 89 a+c=16,89△ABCFŽ7 30.(12c) 18.4:(1)s1j#[Zw 珋x=1 4×(10+11+13+12)=11.5, 珋y=1 4×(22+24+31+27)=26, ∑ 4 i=1 xiyi=10×22+11×24+13×31+12×27=1211, ∑ 4 i=1 x2 i=102+112+132+122=534; ∴^b= ∑ 4 i=1 xiyi-4珋x珋y ∑ 4 i=1 x2 i-4珋x2 =1211-4×11.5×26 534-4×11.52 =15 5=3;(8c) : ^a=珋y-^b珋x=26-3×11.5=-8.5, ∴^y=3x-8.5.(10c) (2)s(1)w,” x=8.5M,^y=3×8.5-8.5=17, ∴% 5]\]^_7 8.5`1M,abbcX7 17d.(12c) 19.4:(1)ðñ:∵EP¡e ADFjG,∴DE=EA=2, ?△EDCj,sfZ$!w, CE2=DC2+ED2-2DC·ED·cos45° 槡=8+4-2×22×2×槡2 2=4, ∴CE=2=DE,∵CE2+DE2=8=DC2, ∴CE⊥DE,∴CE⊥EA,CE⊥E′E,AE∩E′E=E,!"#$[%10   &] ∵AEAB AEE′,E′EAB AEE′, ∴CE⊥AB AEE′.(6c) (2)£ AEFjG O,9 O7†‡gG, 1-a<0,4w a>1.(3c) (2)DI g(x)=(x+1)e-x-1,ß!w g′(x)=-x ex ,(4c) ” x<0M,g′(x)>0;x>0M,g′(x)<0, 89 g(x)?(-!,0)OÔÕÅQ,?(0,+!)OÔÕÅÆ, 89 x=0M,g(x)£w«º…,g(x)max=g(0)=0.(6c) s(1)[f′(x)=[x2+(2-a)x+1-a]ex, ° h(x)=x2+(2-a)x+1-a=0, 4w x=-1à x=a-1.(7c) ①” 0<a≤2M,-1<a-1, > x∈(-!,-1)M,h(x)>0,f(x)ÔÕÅQ; x∈(-1,a-1)M,h(x)<0,f(x)ÔÕÅÆ; x∈(a-1,+!)M,h(x)>0,f(x)ÔÕÅQ.(8c) 89 x=-1M,f(x)£wkº…,f(-1)=(2+a)e-1, 67 a>0,89 f(-1)=(2+a)e-1>0. x=a-1M,f(x)£wk¬…,f(a-1)=(2-a)ea-1, 67 a≤2,89 f(a-1)=(2-a)ea-1≥0.(9c) v” x→ -!M,x2-ax+1>0,ex>0,89 f(x)>0, ” x→ +!M,x2-ax+1>0,ex>0,89 f(x)>0 67 g(x)max=0,89 f(x)≥g(x)max.(10c) ②” a=0M,f(x)=(x2+1)ex>0%Ðõ,(11c) ¼O[,” 0≤a≤2M,Dx1,x2∈R,f(x1)≥g(x2).(12c) 22.4:(1)∵ρ=4cosθ 2sinθ 2,∴ρ=2sinθ,u ρ2=2ρsinθ, ÿ ρ2=x2+y2,ρsinθ=yûüO’w, x2+y2=2y,!"#$[%12   &] ∴&¡ CF Ñ†‡¿{7 x2+y2=2y.(5c) (2)s1[ ¡ lFl#¿{7 x=1-槡3 2t y=1 2 { t (t7l#),ûü x2+y2=2y–!w t2-(槡3+1)t+1=0, G P,QDEFl#cd7 t1,t2, ∴t1+t2 槡=1+ 3>0,t1t2=1>0, ∴t1>0,t2>0,∴ 1 |MP|+ 1 |MQ|=|MP|+|MQ| |MP||MQ| =|t1|+|t2| |t1||t2| =t1+t2 t1t2 槡= 3+1.(10c) 23.4:(1)›Ç’ f(x)+f(x-1)>3u7|2x+1|+|2x-1|>3, ÇmI x<-1 2 -2x-1-2x{ +1>3 à -1 2≤x≤ 1 2 2x+1-2x{ +1>3 à x>1 2 2x+1+2x{ -1>3 , 4w x<-3 4à x>3 4, ∴g›Ç’F4n7{x|x<-3 4à x>3 4}.(5c) (2)∵f(x)+f(x+3)=|2x+1|+|2x+7|≥|2x+1-(2x+7)|=6,”op”(2x+1)(2x+7) ≤0,u -7 2≤x≤ -1 2M,f(x)+f(x+3)£«¬… 6, ∴a2+5a<6, 4w -6<a<1, ∴¾# aF£…¤¥7(-6,1).(10c)!"#$[%13   &] !$ 1.【23】D 【45】∵A∩B={2},∴2∈B,∴4-4+m=0,∴m=0,∴B={x|x2-2x=0}={0,2}.:; D. 2.【23】C 【45】2(2-i) 1-i =2(2-i)(1+i) (1-i)(1+i)=3+i.:; C. 3.【23】C 【45】∵he7m#FÇÈ#Ä a{ }n j,a2 =1,a4a6 =64,∴ a1q=1 a1q3·a1q5{ =64 ,o q>0,4w a1 =1 2,q=2,∴tÈ q=2.:; C. 4.【23】A 【45】∵cosα=-4 5,α∈(-π,0),∴sinα=-3 5,tanα=3 4,> tan(α-π 4)=tanα-1 1+tanα= 3 4-1 1+3 4 =-1 7,:; A. 5.【23】B 【45】s a,bPÏB ¡a,b›Ay.RS›Ðõ,Zçr¯.∴ “a,b›Ay”P“a,bPÏB  ¡”FUq›rcíî.:; B. 6.【23】C 【45】67s&¡ C:x2 a2 -y2 3=1(a>0)F}qúG7(2,0),89 a2 +3=4,: a2 =1,6ts &¡F¿{7:x2-y2 3=1,89ê56¡¿{7:y 槡=± 3x.:; C. 7.【23】D 【45】sI 0<log3e<1<ln3,[t#³u{šZ[ƒ„F#…7:M=a×b-1=log3e×ln3- 1=1-1=0.:; D. 8.【23】A 【45】N# f(x)=2sin(2x+φ)(|φ|<π 2)FšKÀvAw π 12qÔHŽÙΚK8DE45’ 7:g(x)=2sin[2(x+π 12)+φ]=2sin(2x+π 6+φ),s g(x)¦I yhD¨,> π 6+φ=kπ+π 2, φ=kπ+π 3,k∈Z,v|φ|<π 2,89 φ=π 3,u f(x)=2sin(2x+π 3),” x∈[0,π 2]M,2x+π 3∈ [π 3,4π 3],f(x)min=f(4π 3) 槡=- 3,:; A. 9.【23】D 【45】Çl#Ä a{ }n Ftl7 d,∵Sm-1 =16,Sm =25,Sm+2 =49(m≥2,m∈N),∴am =Sm - Sm-1=25-16=a1+(m-1)d,am+1+am+2=Sm+2-Sm =49-25=2a1+md+(m+1)d,Sm =25=!"#$[%14   &] ma1+m(m-1) 2 d,'õ4w:m=5,a1=1,d=2.:; D. 10.【23】C 【45】N# f(x)=e x -2|x|-1PxN#,yz;e B,” x>0M,N# f(x)=ex-2x-1,Z wf′(x)=ex-2,” x∈(0,ln2)M,f′(x)<0,N#PÆN#,” x>ln2M,f′(x)>0,N#P QN#,yz;e A,D,:; C. 11.【23】B 【45】s1=Z[ PA,PE,PFppQ ,∴PA⊥AB PEF,∴V‚GA-PEF =1 3S△PEF·PA=1 3× 1 2×1×1×2=1 3, P•AB AEFF܊7 h,v S△AEF =22-1 2×1×2-1 2×1×2-1 2×1× 1=3 2,∴V‚GP-AEF =1 3×3 2×h=h 2,∴ h 2=1 3,: h=2 3.:; B. ! " # $ 12.【23】B 【45】{|N# f(x)=lnx x,!#f′(x)=1-lnx x2 ,” 0<x<eM,f′(x)>0,f(x)ÅQ;x>e M,f′(x)<0,f(x)ÅÆ.Zw f(x)F«º…7 f(e)=1 e.s 槡2< 5<e,Zw f(2)<f(槡5), uVln2 2 < 槡ln 5 槡5 ,u 槡ln5> 5ln2,:①›mn;s槡e<槡π<e,Zw f(槡e)<f(槡π),uV 槡ln e 槡e <ln槡π 槡π ,u lnπ> π 槡e,:②mn; g(x)=2x-x2,Zw g(2)=g(4)=0,? 2<x< 4M,g(x)<0,uV 2槡11 <11,:③mn;7 2槡3 <3=2log23Ðõ,>槡3<log23=ln3 ln2= 槡2ln 3 ln2Ð õ,> 槡ln 3 槡3 >ln2 2Ðõ,}~ 槡ln 3 槡3 <ln2 2,89 2槡3 >3,:④fg. 13.【23】40 【45】∵(x-2)5‘’F“et’7 Tr+1=Cr 5·(-2)r·x5-r,∴x(x-2)5‘’F“et ’7 Tr+1=x·Cr 5·(-2)r·x5-r=(-2)r·Cr 5·x6-r,° 6-r=4,ßw r=2,∴x4 eF—#7 C2 5·(-2)2=40. 14.【23】1 【45】€›Ç’Û¹ÞFABOPWš8Þ,‡N#u:z=2x+y,êj z£w«¬…M, êDE=X¹Þ ¡—? yhOFjÜ«¬,[t#³‡N#FDE=XZ[‡N# n· →BD=-x+2y=0 n· →BE=y+k 2z{ =0 ,£ y=1,w n=(2,1,-2 k), AB BDCF÷Àb m=(0,0,1), ∵BÑ E-BD-CFABѺI 60°, ∴|cos〈m,n〉|= 2 k 5+4 k槡 2 <cos60°=1 2, s k>0,4w k> 槡2 15 5 .(12c) 20.4:(1)ˆ‰F‡W¿{7x2 a2 +y2 b2 =1(a>b>0),CúÜ7 c, > A(a,0),M(0,b),F(c,0), ∴ →MF(c,-b),→FA(a-c,0), ∵ →MF· →FA 槡= 2-1, ∴ac-c2 槡= 2-1, v e=c a=槡2 2,a2=b2+c2, ∴a2=2,b2=1. :ˆ‰F‡W¿{7x2 2+y2=1.(4c) (2) P(x1,y1),Q(x2,y2),F7△PQMFQ‹,∴MP⊥FQ. ∵M(0,1),F(1,0), ∴kMF =-1,∴kPQ =1,  ¡ PQF¿{7 y=x+m,ûü•x2 2+y2=1w 3x2+4mx+2m2-2=0, ∴Δ=(4m)2-12(2m2-2)>0,4w 槡- 3<m 槡< 3o m≠1, ∴x1+x2=-4 3m,x1x2=2m2-2 3 , ∵ →PF⊥ →MQ,→PF=(1-x1,-y1),→MQ=(x2,y2-1), ∴x2-x1x2+y1-y1y2=0, u(1-m)(x1+x2)-2x1x2+m-m2=0, s“Ÿ—#F¦—,w 3m2+m-4=0. 4w m=-4 3à m=1(”þ).!"#$[%18   &] :œ? ¡ l,•G F–7△PQMFQ‹,o ¡ lF¿{7 y=x-4 3.(12c) 21.4:(1)N# f(x)=lnx-ex+aF!#7f′(x)=1 x-ex+a. &¡ f(x)?G(1,f(1))(F;¡"Œ7 1-e1+a, ;G7(1,-e1+a),Zw;¡¿{7 y+e1+a=(1-e1+a)(x-1), ° y=0,Zw x= 1 1-e1+a,s1=Zw 1 1-e1+a>0, Zw e1+a<1,4w a<-1.(5c) (2)f′(x)=1 x-ex+a,Z[f′(x)?(0,+∞)ÔÕÅÆ, x→0M,f′(x)→ +∞,x→ +∞M,f′(x)→ -∞, ∴x0∈(0,+∞),” x∈(0,x0)M,f′(x)>0,f(x)ÔÕÅQ, ” x∈(x0,+∞)M,f′(x)<0,f(x)ÔÕÅÆ, uf′(x0)=1 x0 -ex0+a=0, u a=-x0-lnx0 ° g(x)=-x-lnx, ó[ g(x)ÔÕÅÆ,g(1 e)=1-1 e, ” g(x)>1-1 eM,0<x<1 e, u x0∈(0,1 e), ∴f(x)≤f(x0)=lnx0-ex0+a=lnx0-1 x0 , ° φ(x)=lnx-1 x,φ′(x)=x+1 x2 , ” x∈(0,1 e)M,φ′(x)>0,φ(x)ÔÕÅQ, ∴φ(x)<φ(1 e)=-1-e, ∴f(x)<-1-e.(12c) 22.4:(1)‰ CFk†‡¿{7:ρ=4cos(θ-π 3)=2cosθ 槡+23sinθ, ∴ρ2=2ρcosθ 槡+23ρsinθ. ∵x=ρcosθ,y=ρsinθ,x2+y2=ρ2, ∴ Ñ†‡¿{7:x2+y2=2x 槡+23y, ∴‰ CF Ñ†‡¿{7 x2+y2-2x 槡-23y=0.(5c) (2)ÿ ¡ lFl#¿{ûü x2+y2-2x 槡-23y=0,!"#$[%19   &] w t2-2(槡3-1)tsinφ 槡-23=0, G A、B8DEFl#7 t1˜ t2, >:t1·t2 槡=-23, ∴|PA||PB 槡|=23.(10c) 23.4:(1)f(x)>g(x),u|2x-2|<|x|. (2x-2)2<x2,–!w(3x-2)(x-2)<0,4w 2 3<x<2, ∴›Ç’ f(x)>g(x)F4n7{x|2 3<x<2}.(5c) (2)7 2f(x)+g(x)=2|x|+|2x-2|, ” x≤0M,—˜q›Ç’ -2x-2x+2>ax+1%Ðõ,u ax<-4x+1, 7 x=0,›Ç’%Ðõ,a∈R, 7 x<0,> a>-4+1 x%Ðõ,tM a≥ -4; ” 0<x<1M,—˜q 2x-2x+2>ax+1%Ðõ,u a<1 x,Zw a≤1, ” x≥1M,—˜q 2x+2x-2>ax+1%Ðõ,u a<4-3 x%Ðõ,Zw a<1, ¼O¾# aF£…¤¥P[-4,1).(10c)!"#$[%20   &] !% 1.【23】B 【45】4~›Ç’ x2-x-6≥0w x≤ -2à x≥3,u A={x|x≤ -2à x≥3},v B={0,1, 2,3,4},89 A∩B={3,4},:; B. 2.【23】D 【45】s z1=-1-i,z1z=4,w z=4 z1 = 4 -1-i= 4(-1+i) (-1-i)(-1+i)=-2+2i,∴z=-2-2i.> @# z?@ABCDEGF†‡7(-2,-2).:; D. 3.【23】D 【45】“[™AšF˚,Zyz A,B,“[vAš Ñ‚ÑËF˚,Zyz C,:; D. 4.【23】A 【45】s&¡x2 a2 -y2 b2 =1(a>0,b>0)F}í56¡¿{7 y=3 4x,Zw b a=3 4,uc2-a2 a2 =9 16, 4w e2=25 16,e=5 4.:; A. 5.【23】C 【45】∵ Ñ α?%KL,cosα= - 槡22 3 ,∴ sinα= 1-cos2槡 α=1 3,∴ cos2(α 2 +π 4)= 1+cos(α+π 2) 2 =1-sinα 2 =1 3.:; C. 6.【23】D 【45】s1=[(x+1)nF‘’Fhe—#˜7 32,u 2n=32,4w n=5,>e’(x+1)n =(x+1)5F‘’j x4Fe7 C1 5·x4=5x4,89 x4F—#7 5,:; D. 7.【23】A 【45】W1š,∵a=30cm,b=40cm,∴¬m¿ËFòŽ7 40-30=10,ºm¿ËFòŽ c= a2+b槡 2 =50.>¬m¿ËB=7 100,ºm¿ËB=7 2500,>sDEïFïŒXYt’wù S›?¬m¿ËCFïŒP:p=100 2500=1 25.:; A. 8.【23】A 【45】f(-x)=(-x-1 x)cos(-x)=-(x+1 x)cosx=-f(x),N#PœN#,šK¦IgG D¨,yz B,D,f(1)=2cos1>0,yz C,:; A. 9.【23】A 【45】N# y=sin(2x-π 6)FšKÀvAw π 6qÔHŽÙ,w• y=sin[2(x+π 6)-π 6]= sin(2x+π 6).° -π 2+2kπ≤2x+π 6≤2kπ+π 2(k∈Z),4w -π 3+kπ≤x≤kπ+π 6(k∈Z),” k=0M,N#FÔÕÅQOâ7[-π 3,π 6]. 10.【23】C 【45】?△ABCj,∵sinC=2sinB,∴smZ$!Zw c=2b,v∵a=3,A=π 3,∴sfZ$!"#$[%21   &] !Zw 9=b2+c2-bc=b2+(2b)2-b·2b,4w b 槡= 3,∴c 槡=2 3,∴△ABCFŽ7 a+b+c 槡 槡 槡=3+ 3+23=3+33.:; C. 11.【23】B 【45】s 1 = Z w:  ¡ OPŸ A B A1BD8 Ð F Ñ αF £ … ¤ ¥ P [∠AOA1,π 2]∪ [∠C1OA1,π 2].›  £ AB=2.? Rt△ AOA1 j,sin∠AOA1 =AA1 A1O = 2 22+(槡2)槡 2 =槡6 3. sin∠C1OA1=sin(π-2∠AOA1)=sin2∠AOA1 =2sin∠AOA1cos∠AOA1 =2×槡6 3 ×槡3 3 = 槡22 3 > 槡6 3,sinπ 2=1.∴sinαF£…¤¥P[槡6 3,1].:; B. 12.【23】C 【45】 y=h(x)FšKŸ y=g(x)FšK¦I ¡ y=0D¨,> y=h(x)=-mx,s f(x)Ÿ g(x)FšKOœ?¦I ¡ y=0D¨FG,;¡¿{7 y-y0=2 x0 (x-x0),vt ¡cosθ= a·b |a||b|=1 2,∴θ=π 3. 14.【23】2 【45】s¾# x,yëì x-y≥0 x+2y-6≤0 x-3y≤{ 0 ,™„ZyPWš,z=y+2 x+1FDE=X7ZyPCFŸG Ÿ$G D(-1,-2)©¡F"Œ,∵kDO =0+2 0+1=2,∴z=y+2 x+1F«º…P 2.!"#$[%22   &] ! " !" !# !$ !% !& & % $ # " !"!#!$!%!& # %$#" &$ 15.【23】9 2 【45】“[1=,N# f(x)= 1+log2(2-x),x<1 2x-1,x≥{ 1 ,> f(-2)=1+log2[2-(-2)]=1+2= 3,f(log23)=2log23-1=3 2,> f(-2)+f(log23)=3+3 2=9 2. 16.【23】3 【45】Wš, P(x0,y0),< P™W¡FQ¡ PM,Qì7 M,ã∠PAM=α,” PA7øù¡F ;¡M,α£w«¬…,sinα£w«¬…,槡2|PA|+|PF| |PF| = 槡2 |PF| |PA| +1= 槡2 |PM| |PA| +1= 槡2 sinα+1£ w«º…,∵x2=4y,∴y=x2 4,∴y′=x 2,∴kPA =x0 2,v kPA =y0-(-1) x0-0 = x2 0 4+1 x0 ,∴x0 2= x2 0 4+1 x0 , 4w x0=±2,∴|PA|= x2 0+(x2 0 4+1)槡 2 槡=2 2,|PM|=x2 0 4+1=2,∴sinα= 2 槡22 =槡2 2,∴g’ F«º…7槡2 槡2 2 +1=2+1=3. ! " !" !# !$ !% !& & % $ # " # !"!#!$ $!%!& % & ' "#(%! %$#" & 17.4:(1)tl d›7žFÇl#Ä{an}j, s S3=9,w a1+a2+a3=9,u 3a2=9,Zw a2=3, v∵a1,a2,a5ÐÇÈ#Ä,∴a2 2=a1a5, u a2 2=(a2-d)(a2+3d), Zw d2-2d=0, 4w d=2à d=0(”þ), ∴a1=a2-d=1,: an=2n-1.(6c)!"#$[%23   &] (2)s{bn-an}PNe7 1,tÈ7 2FÇÈ#Ä,Zw bn-an=2n-1, ∴bn=2n-1+an=2n-1+2n-1,(9c) ∴  ne˜ Tn=(1+2+… +2n-1)+(1+3+… +2n-1)=1-2n 1-2+1 2n(1+2n-1)=2n-1+ n2.(12c) 18.4:(1)¡î Ai7“% i¦“Â?c8Þ,s z=2y-x,w y=1 2x+1 2z,Aw  ¡ y=1 2x+1 2z,sšKZ[:” ¡ y=1 2x+1 2z¶ a5=8.:; C. 7.【23】B 【45】l,mPp훝F ¡,mQ IAB α,” l⊥mM,l//αà lα,RS,7 l//α,}$V l⊥m,89 l,mPp훝F ¡,mQ IAB α,>“l⊥m”P“l//α”FUq›rcíî.: ; B. 8.【23】A 【45】N# y=cos(π 6-2x)=cos(2x-π 6)=sin(π 2+2x-π 6)=sin(2x+π 3),Z[ÀÑAw π 24 qÔH,w• y=sin(2x+π 4)FšK.:; A. 9.【23】D!"#$[%35   &] 【45】∵?ÊË ABCDj,∠ABC=π 2,AD//BC,BC=2AD=2AB=2,∴ÿÊË ABCDÒ AD8? F ¡ÓÁ}»ËÐF&B8¥ÐFDESP:}qIBCJ7 AB=1,'7 BC=2F‰® Æþ}qIBCJ7 AB=1,'7 BC-AD=2-1=1F‰G,∴DESF¹B=7:S=π×12 + 2π×1×2+π×1× 12+1槡 2 =( 槡5+ 2)π.:; D. 10.【23】B 【45】“[1=,;¡F"Œ7 k,ê‚"ÑP θ,f(x)=槡3 3x3 +lnx-x,>f′(x) 槡= 3x2 +1 x -1,>V k=f′(1) 槡= 3,> tanθ 槡= 3,vs 0≤θ<π,> θ=π 3,:; B. 11.【23】B 【45】s|→AB-→NB|=|→AM-→AN|,Zw|→AN|=|→MN|,£ AMFjG7 O,©ª ON,> ON⊥AM, ∵òŽ7 4FÔË ABCDj,∠A=60°,∴ →AD· →DC=4×4×1 2=8,> →AM· →AN= →AM·(→AO+ →ON)=→AM· →AO+→AM· →ON=1 2 →AM2=1 2(→AD+1 2 →DC) 2 =1 2(→AD2+→AD· →DC+1 4 →DC2)=1 2(16+ 8+1 4×16)=14.:; B. 12.【23】A 【45】äå´b X~B(3,1 4), XY X=2MFïŒ7 P(X=2)=C2 3(1 4) 2 (3 4)=9 64, #$Ғ7 EX=np=3×1 4=3 4.(12c) 18.4:(1)s cosA=1 8, > 0<A<π 2,o sinA= 槡37 8 , smZ$!Zw:sinB=b asinA= 槡57 16, 67 b<a, 89 0<B<A<π 2, 89 cosB=9 16, Zw:sinC=sin(A+B)=sinAcosB+cosAsinB=槡7 4.(6c)!"#$[%37   &] (2)S△ABC =1 2bcsinA=1 2bc× 槡37 8 = 槡157 4 , 89 bc=20, Zw:a2=b2+c2-2bccosA=b2+c2-2×20×1 8=36, 89 b2+c2=41,Zw:(b+c)2=b2+c2+2bc=41+40=81, 89 b+c=9.(12c) 19.ðñ:(1)< P™ PO⊥AD,Qì7 O,©ª AO,BO, s∠PAD=120°,w∠PAO=60°, ∴? Rt△PAOj,PO=PAsin∠PAO=2sin60°=2×槡3 2 槡= 3, ∵∠BAD=120°,∴∠BAO=60°,AO=AO, ∴△PAO≌△BAO,∴BO=PO 槡= 3, ∵E,FcdP PD,BDFjG,EF=槡6 2, ∴EFP△PBDFjH¡,∴PB=2EF=2×槡6 2 槡= 6, ∴PB2=PO2+BO2,∴PO⊥BO, ∵PO⊥AD,∴PO⊥AB ABCD, v POAB PAD,∴AB PAD⊥AB ABCD.(5c) (2)4:9 O7gG,OB7 xh,OD7 yh,OP7 zh,ôõöâ Ñ†‡—, ! " # $ % & ' ( ) * + A(0,1,0),P(0,0,槡3),B(槡3,0,0),D(0,3,0), ∴E(0,3 2,槡3 2),F(槡3 2,3 2,0), →AE=(0,1 2,槡3 2),→AF=(槡3 2,1 2,0), AB ABCDF}q÷Àb n=(0,0,1), AB ACEF÷Àb m=(x,y,z), > m· →AE=1 2y+槡3 2z=0 m· →AF=槡3 2x+1 2y      =0 ,£ x=1,w m=(1, 槡- 3,1), iBÑFABÑFº¬7 θ, > cosθ=|cos〈m,n〉|= |m·n| |m|·|n|=槡5 5, ∴iBÑ E-AC-DFfZ…7槡5 5.(12c) 20.4:(1)s1=,wúÜ 2c 槡=25,→PB=→BA,!"#$[%38   &] ∴c 槡= 5,oG B7¡e APFjG, ∵G P(0,槡23),A(a,0), ∴B(a 2,槡3), G B(a 2,槡3)?ˆ‰ EO, ∴c 槡= 5,o a2 4a2+3 b2 =1①, v a2=b2+c2,u a2=b2+5②, 'õ①②4w b2=4,a2=b2+c2=9, ∴ˆ‰ EF¿{7x2 9+y2 4=1.(5c) (2)s1Zw S△PAN =6S△PBM, u 1 2|PA|·|PN|·sin∠APN=6×1 2|PB|·|PM|·sin∠BPM, ∴|PN|=3|PM|, ∴ →PN=3 →PM,  M(x1,y1),N(x2,y2), IP →PM=(x1,y1 槡-23),→PN=(x2,y2 槡-23), ∴(x2,y2 槡-23)=3(x1,y1 槡-23), ∴x2=3x1,ux2 x1 =3, IPx2 x1 +x1 x2 =10 3, u(x1+x2)2 x1x2 =16 3①, 'õ y=kx 槡+23 x2 9+y2 4{ =1 ,ýþ y,–!w(9k2+4)x2 槡+363kx+72=0, s Δ=( 槡363k)2 -4×(9k2+4)×72>0,4w k2>8 9, ∴x1+x2=- 槡363k 9k2+4,x1x2= 72 9k2+4, ûü①Z4w k2=32 9,ëì k2>8 9, ∴k=± 槡42 3 , u ¡ lF"Œ k=± 槡42 3 .(12c)!"#$[%39   &] 21.4:(1)f′(x)=ex-(x-a), 7 f(x)?(-!,+!)OÔÕÅQ, > ex-(x-a)≥0u a≥x-ex? R%Ðõ, ° h(x)=x-ex,> h′(x)=1-ex, ° h′(x)≥0,4w:x≤0, ° h′(x)≤0,4w:x≥0, : h(x)?(-!,0)ÅQ,?(0,+!)ÅÆ, : h(x)max=h(0)=-1, : a≥ -1.(4c) (2)s f(x)=ex-1 2(x-a)2+4,wf′(x)=ex-x+a, ° h(x)=ex-x+a,> h′(x)=ex-1≥0, : h(x)?[0,+!)ÅQ,o h(0)=1+a, ①” a≥ -1M,f′(x)≥0,N# f(x)ÅQ, sI f(x)≥0%Ðõ,>V f(0)=5-1 2a2≥0,u 槡- 10≤a≤ 槡10, : -1≤a≤ 槡10ëìíî, ②” a<-1M,>œ? x0∈(0,+!),•w h(x0)=0, ” 0<x<x0M,h(x)<0,>f′(x)<0,f(x)ÅÆ, ” x>x0M,h(x)>0,>f′(x)>0,f(x)ÅQ, : f(x)min=f(x0)=ex0 -1 2(x0-a)2+4≥0, v x0ëì h(x0)=ex0 -x0+a=0,u x0-a=ex0, : ex0 -1 2e2x0 +4≥0,> e2x0 -2ex0 -8≤0, u(ex0 -4)(ex0 +2)≤0,w 0<x0≤ln4, v a=x0-ex0,° u(x)=x-ex,> u′(x)=1-ex, Z[,” 0<x≤ln4M,u′(x)<0,> u(x)ÅÆ, : u(x)≥ln4-4, tM ln4-4≤a<-1,ëìíî, ¼O,aF¤¥P[2ln2-4,槡10].(12c) 22.4:(1)‰ O1˜‰ O2Fk†‡¿{cd7 ρ=4˜ ρ=4sinθ, ÁÂ7 Ñ†‡¿{7: ‰ O1F Ñ†‡¿{7 x2+y2=16, ‰ O2F Ñ†‡¿{7 x2+y2=4y.(5c) (2)ÿ θ=π 6(ρ>0)ûü‰ O1˜‰ O2Fk†‡¿{: w A(4,π 6)、B(2,π 6)!"#$[%40   &] 89|AB|=2,q•‚ÑË ABCB=£«º…, —q‰ O2OFG C• ¡ ABF܊«º, 4 y 槡=- 3x+2 x2+y2=4{ y , w:G CF Ñ†‡7(-1, 槡2+ 3).(10c) 23.4:(1)67 g(x)=|x-1|+|2x+4|= 3x+3,x≥1 x+5,-2≤x<1 -3x-3,x{ <-2 , :s g(x)<6w: 3x+3<6 x≥{ 1 à x+5<6 -2≤x{ <1 à -3x-3<6 x{ <-2 , 4wà -2≤x<1à -3<x<-2, :g›Ç’4n7:(-3,1).(5c) (2)Z[ g(x)F…P7[3,+!),}~ f(x)F…P7(-!,a+2].

资料: 455

进入主页

人气:

10000+的老师在这里下载备课资料