高中数学(人教版必修2)配套练习 第一章章末检测.doc
加入VIP免费下载

高中数学(人教版必修2)配套练习 第一章章末检测.doc

ID:279027

大小:300.78 KB

页数:5页

时间:2020-08-15

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
章末检测 一、选择题 1.如图所示的长方体,将其左侧面作为上底面,右侧面作为下底面,水平放置,所得的几 何体是 (  ) A.棱柱 B.棱台 C.棱柱与棱锥组合体 D.无法确定 1 题图       2 题图 2.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为:①长方形;②正方 形;③圆.其中正确的是 (  ) A.①② B.②③ C.①③ D.①② 3.如图所示的正方体中,M、N 分别是 AA1 、CC1 的中点,作四边形 D1MBN,则四边形 D1MBN 在正方体各个面上的正投影图形中,不可能 出现的是 (  ) 4.如图所示的是水平放置的三角形直观图,D′是△A′B′C′中 B′C′边上的一点,且 D′离 C′比 D′离 B′近,又 A′D′∥y′轴,那么原△ABC 的 AB、AD、AC 三条线段 中(  ) A.最长的是 AB,最短的是 AC B.最长的是 AC,最短的是 AB C.最长的是 AB,最短的是 AD D.最长的是 AD,最短的是 AC 4 题图      5 题图 5.具有如图所示直观图的平面图形 ABCD 是 (  ) A.等腰梯形 B.直角梯形 C.任意四边形 D.平行四边形 6.如图是一个几何体的三视图,则在此几何体中,直角三角形的个数是 (  )A.1 B.2 C.3 D.4 7.如图,网格纸上小正方形的边长为 1,粗线画出的是某几何体的三视图,则此几何体的体 积为 (  ) A.6 B.9 C.12 D.18 8.平面 α 截球 O 的球面所得圆的半径为 1,球心 O 到平面 α 的距离为 2,则此球的体积为 (  ) A. 6π B.4 3π C.4 6π D.6 3π 9.如图所示,则这个几何体的体积等于 (  ) A.4 B.6 C.8 D.12 10.将正三棱柱截去三个角(如图 1 所示,A,B,C 分别是△GHI 三边的中点)得到几何体如 图 2,则该几何体按图 2 所示方向的侧视图为选项图中的 (  ) 11.圆锥的表面积是底面积的 3 倍,那么该圆锥的侧面展开图扇形的圆心角为 (  ) A.120° B.150° C.180° D.240° 12.已知三棱锥 S-ABC 的所有顶点都在球 O 的球面上,△ABC 是边长为 1 的正三角形,SC 为球 O 的直径,且 SC=2,则此棱锥的体积为 (  )A. 2 6 B. 3 6 C. 2 3 D. 2 2 二、填空题 13.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________(填入 所有可能的几何体前的编号). ①三棱锥 ②四棱锥 ③三棱柱 ④四棱柱 ⑤圆锥 ⑥圆柱 14.已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于________ cm3. 15.已知各顶点都在一个球面上的正四棱柱高为 4,体积为 16,则这个球的表面积是 ________. 16.一个水平放置的圆柱形储油桶(如图所示),桶内有油部分所在圆弧占底面 圆周长的1 4,则油桶直立时,油的高度与桶的高度的比值是________. 三、解答题 17.某个几何体的三视图如图所示(单位:m), (1)求该几何体的表面积(结果保留 π); (2)求该几何体的体积(结果保留 π). 18.如图是一个空间几何体的三视图,其中正视图和侧视图都是边长为 2 的正三角形,俯视 图如图.   (1)在给定的直角坐标系中作出这个几何体的直观图(不写作法);(2)求这个几何体的体积. 19. 如图所示,在四边形 ABCD 中,∠DAB=90°,∠ADC=135°,AB=5,CD=2 2,AD= 2,求四边形 ABCD 绕 AD 旋转一周所成几何体的表面积及体积. 20. 如图所示,有一块扇形铁皮 OAB,∠AOB=60°,OA=72 cm,要剪下来一个扇形环 ABCD,作圆台形容器的侧面,并且余下的扇形 OCD 内剪下一块与其相切的圆形使它恰 好作圆台形容器的下底面(大底面). 试求:(1)AD 的长;(2)容器的容积.答案 1.A 2.B 3.D 4.C 5.B 6.D 7.B 8.B 9.A 10.A 11.C 12.A 13.①②③⑤ 14.1 15.24π 16.1 4- 1 2π 17.解 由三视图可知:该几何体的下半部分是棱长为 2 m 的正方体,上半部分是半径为 1 m 的半球. (1)几何体的表面积为 S=1 2×4π×12+6×22-π×12=24+π(m2). (2)几何体的体积为 V=23+1 2×4 3×π×13=8+2π 3 (m3). 18.解 (1)直观图如图. (2)这个几何体是一个四棱锥. 它的底面边长为 2,高为 3, 所以体积 V=1 3×22× 3=4 3 3 . 19.解 S 表面=S 圆台底面+S 圆台侧面+S 圆锥侧面=π×52+π×(2+5)×5+π×2×2 2 =(4 2+60)π. V=V 圆台-V 圆锥 =1 3π(r21+r1r2+r22)h-1 3πr21h′ =1 3π(25+10+4)×4-1 3π×4×2 =148 3 π. 20.解 (1)设圆台上、下底面半径分别为 r、R,AD=x, 则 OD=72-x,由题意得 Error!,∴Error!. 即 AD 应取 36 cm. (2)∵2πr=π 3·OD=π 3·36, ∴r=6 cm, 圆台的高 h= x2-(R-r)2= 362-(12-6)2=6 35. ∴V=1 3πh(R2+Rr+r2)=1 3π·6 35·(122+12×6+62)=504 35π(cm3).

资料: 4978

进入主页

人气:

10000+的老师在这里下载备课资料