高中数学人教A版必修二 模块综合测评 Word版含答案.doc
加入VIP免费下载

高中数学人教A版必修二 模块综合测评 Word版含答案.doc

ID:279028

大小:310.92 KB

页数:12页

时间:2020-08-15

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
模块综合测评 (时间 120 分钟,满分 150 分) 一、选择题(本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个 选项中,只有一项是符合题目要求的) 1.过点 A(3,-4),B(-2,m)的直线 l 的斜率为-2,则 m 的值为(  ) A.6 B.1 C.2 D.4 【解析】 由题意知 kAB= m+4 -2-3 =-2,∴m=6. 【答案】 A 2.在 x 轴、y 轴上的截距分别是-2、3 的直线方程是(  ) A.2x-3y-6=0 B.3x-2y-6=0 C.3x-2y+6=0 D.2x-3y+6=0 【解析】 由直线的截距式得,所求直线的方程为 x -2 +y 3 =1,即 3x-2y+6= 0. 【答案】 C 3.已知正方体外接球的体积是 32 3 π,那么正方体的棱长等于(  ) A.2 2 B.2 2 3 C.4 2 3 D.4 3 3 【解析】 设正方体的棱长为 a,球的半径为 R,则 4 3πR3=32 3 π,∴R=2.又∵ 3a=2R=4,∴a=4 3 3 . 【答案】 D 4.关于空间直角坐标系 Oxyz 中的一点 P(1,2,3)有下列说法: ①点 P 到坐标原点的距离为 13;②OP 的中点坐标为(1 2 ,1,3 2); ③与点 P 关于 x 轴对称的点的坐标为(-1,-2,-3); ④与点 P 关于坐标原点对称的点的坐标为(1,2,-3); ⑤与点 P 关于坐标平面 xOy 对称的点的坐标为(1,2,-3). 其中正确的个数是(  ) A.2 B.3 C.4 D.5 【解析】 点 P 到坐标原点的距离为 12+22+32= 14,故①错;②正确; 与点 P 关于 x 轴对称的点的坐标为(1,-2,-3),故③错;与点 P 关于坐标原点 对称的点的坐标为(-1,-2,-3),故④错;⑤正确,故选 A. 【答案】 A 5.如图 1,在长方体 ABCD­A1B1C1D1 中,M、N 分别是棱 BB1、B1C1 的中点, 若∠CMN=90°,则异面直线 AD1 和 DM 所成角为(  ) 图 1 A.30° B.45° C.60° D.90° 【解析】 因为 MN⊥DC,MN⊥MC, 所以 MN⊥平面 DCM. 所以 MN⊥DM. 因为 MN∥AD1,所以 AD1⊥DM. 【答案】 D 6.(2015·福建高考)某几何体的三视图如图 2 所示,则该几何体的表面积等于 (  )图 2 A.8+2 2 B.11+2 2 C.14+2 2 D.15 【解析】 由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形, 如图所示. 直角梯形斜腰长为 12+12= 2,所以底面周长为 4+ 2,侧面积为 2×(4+ 2)=8+2 2,两底面的面积和为 2×1 2 ×1×(1+2)=3,所以该几何体的表面积 为 8+2 2+3=11+2 2. 【答案】 B 7.已知圆 x2+y2+2x+2y+k=0 和定点 P(1,-1),若过点 P 的圆的切线有 两条,则 k 的取值范围是(  ) A.(-2,+∞) B.(-∞,2) C.(-2,2) D.(-∞,-2)∪(2,+∞) 【解析】 因为方程 x2+y2+2x+2y+k=0 表示一个圆,所以 4+4-4k>0, 所以 k<2.由题意知点 P(1,-1)在圆外,所以 12+(-1)2+2×1+2×(-1)+k>0, 解得 k>-2,所以-2<k<2. 【答案】 C 8.在三棱柱 ABC­A1B1C1 中,各棱长相等,侧棱垂直于底面,点 D 是侧面 BB1C1C 的中心,则 AD 与平面 BB1C1C 所成角的大小是(  ) A.30° B.45°C.60° D.90° 【解析】 如图,取 BC 的中点 E,连接 DE、AE、AD.依题设知 AE⊥平面 BB1C1C.故∠ADE 为 AD 与平面 BB1C1C 所成的角.设各棱长为 2,则 AE= 3 2 ×2 = 3,DE=1. ∵tan∠ADE=AE DE = 3 1 = 3, ∴∠ADE=60°,故选 C. 【答案】 C 9.(2015·开封高一检测)若 m、n 为两条不重合的直线,α、β 为两个不重合的 平面,则下列说法中正确的是(  ) ①若直线 m、n 都平行于平面 α,则 m、n 一定不是相交直线; ②若直线 m、n 都垂直于平面 α,则 m、n 一定是平行直线; ③已知平面 α、β 互相垂直,且直线 m、n 也互相垂直,若 m⊥α,则 n⊥β; ④若直线 m、n 在平面 α 内的射影互相垂直,则 m⊥n. A.② B.②③ C.①③ D.②④ 【解析】 对于①,m 与 n 可能平行,可能相交,也可能异面; 对于②,由线面垂直的性质定理可知,m 与 n 一定平行,故②正确; 对于③,还有可能 n∥β;对于④,把 m,n 放入正方体中,如图,取 A1B 为 m,B1C 为 n,平面 ABCD 为平面 α,则 m 与 n 在 α 内的射影分别为 AB 与 BC, 且 AB⊥BC.而 m 与 n 所成的角为 60°,故④错.因此选 A.【答案】 A 10.(2015·全国卷Ⅱ)已知三点 A(1,0),B(0, 3),C(2, 3),则△ABC 外接 圆的圆心到原点的距离为(  ) A.5 3 B. 21 3 C.2 5 3 D.4 3 【解析】  在坐标系中画出△ABC(如图),利用两点间的距离公式可得|AB|=|AC|=|BC|= 2(也可以借助图形直接观察得出),所以△ABC 为等边三角形.设 BC 的中点为 D, 点 E 为外心,同时也是重心.所以|AE|=2 3|AD|=2 3 3 ,从而|OE|= |OA|2+|AE|2= 1+4 3 = 21 3 ,故选 B. 【答案】 B 11.(2016·重庆高一检测)已知 P(x,y)是直线 kx+y+4=0(k>0)上一点,PA 是圆 C:x2+y2-2y=0 的一条切线,A 是切点,若 PA 长度的最小值为 2,则 k 的 值是(  ) 【导学号:09960153】 A.3 B. 21 2 C.2 2 D.2 【解析】 圆 C:x2+y2-2y=0 的圆心是(0,1),半径是 r=1, ∵PA 是圆 C:x2+y2-2y=0 的一条切线,A 是切点,PA 长度的最小值为 2, ∴圆心到直线 kx+y+4=0 的最小距离为 5, 由点到直线的距离公式可得 |1+4| k2+1 = 5, ∵k>0,∴k=2,故选 D.【答案】 D 12.(2016·德州高一检测)将边长为 a 的正方形 ABCD 沿对角线 AC 折起,使得 BD=a,则三棱锥 D­ABC 的体积为(  ) A. 2 12 a3 B.a3 12 C. 2 4 a3 D.a3 6 【解析】 取 AC 的中点 O,如图, 则 BO=DO= 2 2 a, 又 BD=a,所以 BO⊥DO,又 DO⊥AC, 所以 DO⊥平面 ACB, VD­ABC=1 3S△ABC·DO =1 3 ×1 2 ×a2× 2 2 a= 2 12 a3. 【答案】 A 二、填空题(本大题共 4 小题,每小题 5 分,共 20 分,将答案填在题中的横线 上) 13.已知两条平行直线的方程分别是 2x+3y+1=0,mx+6y-5=0,则实数 m =________. 【解析】 由于两直线平行,所以2 m =3 6 ≠ 1 -5 ,∴m=4. 【答案】 4 14.一个横放的圆柱形水桶,桶内的水漫过底面周长的四分之一,那么当桶 直立时,水的高度与桶的高度的比为________. 【解析】 设圆柱形水桶的底面半径为 R,高为 h,桶直立时,水的高度为 x. 横放时水桶底面在水内的面积为(1 4πR2-1 2R2),水的体积为V 水=(1 4πR2-1 2R2)h. 直立时水的体积不变,则有 V 水=πR2x, ∴x∶h=(π-2)∶4π. 【答案】 (π-2)∶4π 15.已知一个等腰三角形的顶点 A(3,20),一底角顶点 B(3,5),另一顶点 C 的 轨迹方程是________. 【解析】 设点 C 的坐标为(x,y), 则由|AB|=|AC|得 (x-3)2+(y-20)2 = (3-3)2+(20-5)2, 化简得(x-3)2+(y-20)2=225. 因此顶点 C 的轨迹方程为(x-3)2+(y-20)2=225(x≠3). 【答案】 (x-3)2+(y-20)2=225(x≠3) 16.(2015·湖南高考)若直线 3x-4y+5=0 与圆 x2+y2=r2(r>0)相交于 A,B 两 点,且∠AOB=120°(O 为坐标原点),则 r=__________. 【解析】 如图,过点 O 作 OD⊥AB 于点 D,则|OD|= 5 32+(-4)2 =1. ∵∠AOB=120°,OA=OB, ∴∠OBD=30°, ∴|OB|=2|OD|=2,即 r=2. 【答案】 2 三、解答题(本大题共 6 小题,共 70 分.解答应写出文字说明,证明过程或演 算步骤) 17.(本小题满分 10 分)直线 l1 过点 A(0,1),l2 过点 B(5,0),如果 l1∥l2 且 l1 与 l2 的距离为 5,求 l1,l2 的方程. 【解】 若直线 l1,l2 的斜率都不存在,则 l1 的方程为 x=0,l2 的方程为 x=5,此时 l1,l2 之间距离为 5,符合题意; 若 l1,l2 的斜率均存在,设直线的斜率为 k,由斜截式方程得直线 l1 的方程为 y =kx+1,即 kx-y+1=0, 由点斜式可得直线 l2 的方程为 y=k(x-5),即 kx-y-5k=0,在直线 l1 上取点 A(0,1),则点 A 到直线 l2 的距离 d= |1+5k| 1+k2 =5,∴25k2+10k+1=25k2+25,∴k= 12 5 . ∴l1 的方程为 12x-5y+5=0,l2 的方程为 12x-5y-60=0. 综上知,满足条件的直线方程为 l1:x=0,l2:x=5 或 l1:12x-5y+5=0,l2:12x-5y-60=0. 18.(本小题满分 12 分)已知圆 C1:x2+y2-4x+2y=0 与圆 C2:x2+y2-2y-4 =0. (1)求证:两圆相交; (2)求两圆公共弦所在直线的方程. 【导学号:09960154】 【解】 (1)证明:圆 C1:x2+y2-4x+2y=0 与圆 C2:x2+y2-2y-4=0 化为 标准方程分别为圆 C1:(x-2)2+(y+1)2=5 与圆 C2:x2+(y-1)2=5,则圆心坐标 分别为 C1(2,-1)与 C2(0,1),半径都为 5,故圆心距为 (2-0)2+(-1-1)2=2 2, 又 0

资料: 4978

进入主页

人气:

10000+的老师在这里下载备课资料