人教a版数学【选修1-1】作业:3.2.1-3.2.2(含答案).doc
加入VIP免费下载

人教a版数学【选修1-1】作业:3.2.1-3.2.2(含答案).doc

ID:282811

大小:232.67 KB

页数:4页

时间:2020-09-23

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
§3.2 导数的计算 3.2.1 几个常用函数的导数 3.2.2 基本初等函数的导数公式及导数的运算法则(一) 课时目标  1.能根据定义求函数 y=c,y=x,y=x2,y=1 x的导数.2.能利用给出的基本 初等函数的导数公式求简单函数的导数. 1.函数 y=f(x)=c 的导数为____________,它表示函数 y=c 图象上每一点处,切线的 斜率为 0.若 y=c 表示路程关于时间的函数,则 y′=0 可以解释为某物体的____________始 终为 0,即一直处于________状态.函数 y=f(x)=x 的导数为__________,它表示函数 y=x 图象上每一点处切线的斜率为 1.若 y=x 表示路程关于时间的函数,则 y′=1 可以解释为某 物体做____________为 1 的______________运动. 2.常见基本初等函数的导数公式: (1)若 f(x)=c(c 为常数),则 f′(x)=______; (2)若 f(x)=xα (α∈Q*),则 f′(x)=________; (3)若 f(x)=sin x,则 f′(x)=________; (4)若 f(x)=cos x,则 f′(x)=________; (5)若 f(x)=ax,则 f′(x)=________ (a>0); (6)若 f(x)=ex,则 f′(x)=________; (7)若 f(x)=logax,则 f′(x)=________ (a>0,且 a≠1); (8)若 f(x)=ln x,则 f′(x)=________. 一、选择题 1.下列结论不正确的是(  ) A.若 y=3,则 y′=0 B.若 y= 1 x ,则 y′=-1 2 x C.若 y=- x,则 y′=- 1 2 x D.若 y=3x,则 y′=3 2.下列结论:①(cos x)′=sin x;②(sin π 3 )′=cos π 3;③若 y= 1 x2,则 y′|x=3=- 2 27. 其中正确的有(  ) A.0 个   B.1 个   C.2 个   D.3 个 3.已知直线 y=kx 是曲线 y=ex 的切线,则实数 k 的值为(  ) A.1 e B.-1 e C.-e D.e 4.正弦曲线 y=sin x 上一点 P,以点 P 为切点的切线为直线 l,则直线 l 的倾斜角的范 围是(  ) A.[0,π 4 ]∪[3π 4 ,π) B.[0,π) C.[π 4,3π 4 ] D.[0,π 4 ]∪[π 2,3π 4 ] 5.已知曲线 y=x3 在点 P 处的切线斜率为 k,则当 k=3 时的 P 点坐标为(  ) A.(-2,-8) B.(-1,-1)或(1,1)C.(2,8) D.(-1 2,-1 8) 6.质点沿直线运动的路程 s 与时间 t 的关系是 s=5 t,则质点在 t=4 时的速度为(  ) A. 1 25 23 B. 1 105 23 C.2 5 5 23 D. 1 10 5 23 题 号 1 2 3 4 5 6 答 案 二、填空题 7.曲线 y=cos x 在点 A (π 6, 3 2 )处的切线方程为__________________________. 8.已知 f(x)=xa,a∈Q,若 f′(-1)=-4,则 a= ________________________________________________________________________. 9.若函数 y=f(x)满足 f(x-1)=1-2x+x2,则 y′=f′(x)=________. 三、解答题 10.求下列函数的导数: (1)y=x12;(2)y=1 x4;(3)y=5 x3;(4)y=10x. 11.求过点(2,0)且与曲线 y=x3 相切的直线方程. 能力提升 12.设曲线 y=xn+1(n∈N*)在点(1,1)处的切线与 x 轴的交点的横坐标为 xn,令 an=lg xn, 则 a1+a2+…+a99 的值为________. 13.求过曲线 y=ex 上点 P(1,e)且与曲线在该点处的切线垂直的直线方程. 1.准确记忆八个公式是求函数导数的前提. 2.求函数的导数,要恰当选择公式,保证求导过程中变形的等价性. 3.对于一些应用问题如切线、速度等,可以结合导数的几何意义,利用公式进行计 算.§3.2 导数的计算 3.2.1 几个常用函数的导数 3.2.2 基本初等函数的导数公式及 导数的运算法则(一) 知识梳理 1.y′=0 瞬时速度 静止 y′=1 瞬时速度 匀速直线 2.(1)0 (2)αxα-1 (3)cos x (4)-sin x (5)axln a (6)ex (7) 1 xln a (8)1 x 作业设计 1.B [y′=( 1 x )′=(x-1 2)′=-1 2x-3 2=- 1 2x x.] 2.B [直接利用导数公式. 因为(cos x)′=-sin x,所以①错误; sin π 3= 3 2 ,而( 3 2 )′=0,所以②错误; (1 x2 )′=(x-2)′=-2x-3,则 y′|x=3=- 2 27, 所以③正确.] 3.D [设切点为(x0,y0).由 y′=ex, 得 y′|x=x0=ex0, ∴过切点的切线为 y-ex0=ex0(x-x0), 即 y=ex0x+(1-x0)ex0,又 y=kx 是切线, ∴Error! ∴Error!] 4.A [∵y′=cos x,而 cos x∈[-1,1]. ∴直线 l 的斜率的范围是[-1,1], ∴直线 l 倾斜角的范围是[0,π 4 ]∪[3 4π,π).] 5.B [y′=3x2,∵k=3, ∴3x2=3,∴x=±1, 则 P 点坐标为(-1,-1)或(1,1).] 6.B [s′=1 5t-4 5. 当 t=4 时,s′=1 5· 1 5 44= 1 105 23.] 7.x+2y- 3-π 6=0 解析 ∵y′=(cos x)′=-sin x, ∴y′|x=π 6=-sin π 6=-1 2, ∴在点 A 处的切线方程为 y- 3 2 =-1 2(x-π 6 ), 即 x+2y- 3-π 6=0. 8.4 解析 ∵f′(x)=axa-1, ∴f′(-1)=a(-1)a-1=-4,∴a=4. 9.2x 解析 ∵f(x-1)=1-2x+x2=(x-1)2,∴f(x)=x2,f′(x)=2x. 10.解 (1)y′=(x12)′=12x11. (2)y′=(1 x4 )′=(x-4)′=-4x-5=-4 x5. (3)y′=(5 x3)′=(x3 5)′=3 5x-2 5= 3 55 x2. (4)y′=(10x)′=10xln 10. 11.解 点(2,0)不在曲线 y=x3 上,可令切点坐标为(x0,x30).由题意,所求直线方程的 斜率 k=x30-0 x0-2=y′|x=x0=3x20,即 x30 x0-2=3x20,解得 x0=0 或 x0=3. 当 x0=0 时,得切点坐标是(0,0),斜率 k=0,则所求直线方程是 y=0; 当 x0=3 时,得切点坐标是(3,27),斜率 k=27,则所求直线方程是 y-27=27(x-3), 即 27x-y-54=0. 综上,所求的直线方程为 y=0 或 27x-y-54=0. 12.-2 解析 y′=(n+1)xn,曲线在点(1,1)处的切线方程为 y-1=(n+1)(x-1),令 y=0, 得 x= n n+1. an=lg xn=lg n n+1=lg n-lg(n+1), 则 a1+a2+…+a99=lg 1-lg 2+lg 2-lg 3+…+lg 99-lg 100=-lg 100=-2. 13.解 ∵y′=ex,∴曲线在点 P(1,e)处的切线斜率是 y′|x=1=e, ∴过点 P 且与切线垂直的直线的斜率 k=-1 e, ∴所求直线方程为 y-e=-1 e(x-1), 即 x+ey-e2-1=0.

资料: 4978

进入主页

人气:

10000+的老师在这里下载备课资料