《数列的概念与简单表示法》教学反思
加入VIP免费下载

《数列的概念与简单表示法》教学反思

ID:314328

大小:4.16 KB

页数:3页

时间:2019-09-17

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
《数列的概念与简单表示法》教学反思本节课是新授课,教学目标如下:知识与技能:理解数列及其有关概念,了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项写出它的个通项公式。过程与方法:通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.情感态度与价值观:通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣教学重点:数列及其有关概念,通项公式及其应用教学难点:根据一些数列的前几项抽象、归纳数列的通项公式教学过程:Ⅰ.课题导入Ⅱ.讲授新课1.数列的定义:按一定次序排列的一列数叫做数列.注意(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.2.数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,….例如,上述例子均是数列,其中①中,“4”是这个数列的第1项(或首项),“9”是这个数列中的第6项.3.数列的一般形式:,或简记为,其中是数列的第n项结合上述例子,帮助学生理解数列及项的定义. ②中,这是一个数列,它的首项是“1”,“”是这个数列的第“3”项,等等4.数列的通项公式:如果数列的第n项与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.注意(1)并不是所有数列都能写出其通项公式,如上述数列④;(2)一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0,…它的通项公式可以是,也可以是.(3)数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项.数列的通项公式具有双重身份,它表示了数列的第 项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.5.数列与函数的关系数列可以看成以正整数集N*(或它的有限子集{1,2,3,…,n})为定义域的函数,当自变量从小到大依次取值时对应的一列函数值。反过来,对于函数y=f(x),如果f(i)(i=1、2、3、4…)有意义,那么我们可以得到一个数列f(1)、 f(2)、 f(3)、 f(4)…,f(n),…6.数列的分类:(1)根据数列项数的多少分:有穷数列:项数有限的数列.例如数列1,2,3,4,5,6。是有穷数列无穷数列:项数无限的数列.例如数列1,2,3,4,5,6…是无穷数列(2)根据数列项的大小分:递增数列:从第2项起,每一项都不小于它的前一项的数列。递减数列:从第2项起,每一项都不大于它的前一项的数列。常数数列:各项相等的数列。摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列    本节课学生反映积极主动,接受良好,但是需要接下来复习巩固,通过习题的练习对知识的理解达到融会贯通。

资料: 3.6万

进入主页

人气:

10000+的老师在这里下载备课资料