课 题
用函数观点看一元二次方程教案(新人教版)
备课日期
年 月 日
课 型
新授
教
学
目
标
知识与技能
1.知道二次函数与一元二次方程的关系.
2.会用一元二次方程ax2+bx+c=0根的判别式△=b2-4ac判断二次函数y=ax2+bx+c与x轴的公共点的个数.
过程与方法
用根的判别式△=b2-4ac判断二次函数y=ax2+bx+c与x轴的公共点的个数.
情感态度
与价值观
进一步增强学生的数形结合思想方法,增强学生的综合解题能力。
教学重点
二次函数与一元二次方程的关系.
教学难点
二次函数y=ax2+bx+c与x轴的公共点的个数.
教学方法
启发式
教学用具
多 媒 体
课时安排
1
教 学 内 容
设计与反思
6
教 学 内 容
设计与反思
一、探索新知
1.问题:如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线.如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系h=20t-5t2.
考虑以下问题:
(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?
(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?
(3)球的飞行高度能否达到20.5m?为什么?
(4)球从飞出到落地要用多少时间?
2.观察图象:
(1)二次函数y=x2+x-2的图象与x轴有____个交点,则一元二次方程x2+x-2=0的根的判别式△=_______0;
(2)二次函数y=x2-6x+9的图像与x轴有___________个交点,则一元二次方程x2-6x+9=0的根的判别式△=_______0;
(3)二次函数y=x2-x+1的图象与x轴________公共点,则一元二次方程x2-x+1=0的根的判别式△_______0.
二、理一理知识
1.已知二次函数y=-x2+4x的函数值为3,求自变量x的值,可以看作解一元二次方程 __________________.反之,解一元二次方程-x2+4x=3又可以看作已知二次函数 __________________的函数值为3的自变量x的值.
一般地:已知二次函数y=ax2+bx+c的函数值为m,求自变量x的值,可以看作解一元二次方程ax2+bx+c=m.反之,解一元二次方程ax2+bx+c=m又可以看作已知二次函数y=ax2+bx+c的值为m的自变量x的值.
6
2.二次函数y=ax2+bx+c与x轴的位置关系:
一元二次方程ax2+bx+c=0的根的判别式△=b2-4ac.
1)当△=b2-4ac>0时 抛物线y=ax2+bx+c与x轴有两个交点;
(2)当△=b2-4ac=0时 抛物线y=ax2+bx+c与x轴只有一个交点;
3)当△=b2-4ac<0时 抛物线y=ax2+bx+c与x轴没有公共点.
三、基本知识练习
1.二次函数y=x2-3x+2,当x=1时,y=________;当y=0时,x=_______.
2.二次函数y=x2-4x+6,当x=________时,y=3.
3.如图,
一元二次方程ax2+bx+c=0的解为_____________
4.如图
一元二次方程ax2+bx+c=3
的解为_________________
5.如图 填空:
(1)a________0
(2)b________0
(3)c________0
(4)b2-4ac________0
6
四、课堂训练
1.特殊代数式求值:
①如图 看图填空:
(1)a+b+c_______0
(2)a-b+c_______0
(3)2a-b _______0
②如图 2a+b _______0
4a+2b+c_______0
2.利用抛物线图象求解一元二次方程及二次不等式
(1)方程ax2+bx+c=0的根为___________;
(2)方程ax2+bx+c=-3的根为__________;
(3)方程ax2+bx+c=-4的根为__________;
(4)不等式ax2+bx+c>0的解集为________;
(5)不等式ax2+bx+c<0的解集为________;
(6)不等式-4<ax2+bx+c<0的解集为________.
五、目标检测
根据图象填空:
(1)a_____0;(2)b_____0;(3)c______0;
(4)△=b2-4ac_____0;(5)a+b+c_____0;
(6)a-b+c_____0;(7)2a+b_____0;
(8)方程ax2+bx+c=0的根为__________;
6
(9)当y>0时,x的范围为___________;
(10)当y<0时,x的范围为___________;
六、课后训练
1.已知抛物线y=x2-2kx+9的顶点在x轴上,则k=____________.
2.已知抛物线y=kx2+2x-1与坐标轴有三个交点,则k的取值范围___________.
3.已知函数y=ax2+bx+c(a,b,c为常数,且a≠0)的图象如图所示,则关于x的方程 ax2+bx+c-4=0的根的情况是( )
A.有两个不相等的正实数根 B.有两个异号实数根
C.有两个相等实数根 D.无实数根
4.如图为二次函数y=ax2+bx+c的图象,在下列说法中:
①ac<0;②方程ax2+bx+c=0的根是x1=-1,x2=3;③a+b+c>0;
④当x>1时,y随x的增大而增大.
正确的说法有__________________(把正确的序号都填在横线上).
七、教学效果追忆:
6
6