2.2 数轴
【知识梳理】
1、数轴的定义:
规定了原点、正方向和单位长度的直线叫数轴.原点、正方向、单位长度称为数轴的三要素,这三者缺一不可,同时应该认识到,这三个要素都是规定的。原点是数轴上有特殊意义的点,它相当于温度计中的零刻度线,正方向一般是规定为向右的方向,单位长度可视具体情况而定。
2、数轴的画法:
数轴的画法可分为四个步骤:(1)画一条水平的直线;(2)在这条直线上的适当位置取一点作为原点;(3)确定正方向,用箭头表示出来;(4)确定单位长度,用细短线画出,并对应地标注各数.
画好了数轴,就可以用数轴上的点表示有理数.正有理数用原点右边的点表示(在数轴上要画出实心的小圆点),负有理数用原点左边的点表示.所有的有理数都可以在数轴上找到它的对应点.
3、数轴的用处:
在数轴上表示的两个有理数,右边的数总比左边的数大.,所以结合数轴,可以比较两个数的大小。
在画数轴时,标注数就是按照数的大小顺序进行的,所以根据正负数在数轴上的位置,可以归纳有理数大小比较的规律:正数都大于0,负数都小于0,正数大于一切负数。
每一个有理数都可以用数轴上的一个点表示出来.
数轴可以用来比较两个数的大小,由于向右的方向是正方向,故数轴上右边的数比左边的数大.
4、相反数
5和-5,和这样的两个数只有符号不同,像这样的两个数是相反数.
一般地,如果两个数只有符号不同,那么我们就说其中一个是另一个的相反数,也说这两个数互为相反数.我们也特别规定,0的相反数是0.
互为相反数的两个数在数轴上的位置是在原点的两侧,且到原点的距离相等.我们也说,数轴上表示互为相反数的两个数的点关于原点对称.
注意,相反数是成对的,不能说单独的一个数是相反数,只能说一个数是另一个数的相反数.
【重点难点】
重点:数轴的画法,用数轴上的点表示有理数,互为相反数的概念,用数轴比较数的大小。
难点:数轴的画法,相反数的理解。
【典例解析】
例1、把下列各数用数轴上的点表示出来,并用“<”号把它们连接起来:6,,,0,,4。
解:
例2 指出下列数轴上A、B、C、D、E、各点分别表示的是什么数,并指出各数的相反数。
解:A点表示,相反数是2;B点表示0.5,相反数是;C点表示3.5,相反数是;D点表示,相反数是4.5;E点表示,相反数是6;
【过关试题】
一、 选择题:
1、下列说法正确的是( )
A. 的相反数是5 B. 是相反数
C. 和是相反数 D. 和是相反数w
2、下列图中为数轴是( )
A. B.
C. D.
3、若一个数的相反数是非负数,则这个数一定是( )
A、负数 B、正数 C、非负数 D、非正数
4、数轴上与原点距离为3的点表示的是( )
A、3 B、-3 C、±3 D、6
5、A、B、C三点在数轴上的位置如图所示,则它们分别表示a、b、c是 ( )
A、a、b、c都表示正数 B、a、b、c都表示负数
C、a、b表示正数,c表示负数 D、a、b表示负数,c表示正数。
一、 填空题:
1、数轴上原点左边的点表示 数,原点右边的点表示 数,
点表示0.
2、比5小的正整数有 ;比—5大的负整数有 .
3、—π的相反数是 ; 的相反数是0.
4、用“>”、“