14.3 因式分解教学设计
加入VIP免费下载

新人教版数学八年级上册教案:14.3 因式分解.doc

本文件来自资料包:《14.3 因式分解教学设计》

共有 1 个子文件

本文件来自资料包: 《14.3 因式分解教学设计》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
‎§14.3因式分解 ‎ 教学目标 ‎ 1.知识与技能 ‎ 了解因式分解的意义,以及它与整式乘法的关系.‎ ‎ 2.过程与方法 ‎ 经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用.‎ ‎ 3.情感、态度与价值观 ‎ 在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.‎ ‎ 重、难点与关键 ‎ 1.重点:了解因式分解的意义,感受其作用.‎ ‎ 2.难点:整式乘法与因式分解之间的关系.‎ ‎ 3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.‎ ‎ 教学方法:采用“激趣导学”的教学方法.‎ ‎ 教学过程 ‎ 一、创设情境,激趣导入 ‎ ‎ 【问题牵引】‎ ‎ 请同学们探究下面的2个问题:‎ ‎ 问题1:720能被哪些数整除?谈谈你的想法.‎ ‎ 问题2:当a=102,b=98时,求a2-b2的值. ‎ ‎ 二、丰富联想,展示思维 ‎ 探索:你会做下面的填空吗?‎ ‎ 1.ma+mb+mc=( )( );‎ ‎ 2.x2-4=( )( ); 3.x2-2xy+y2=( )2.‎ ‎ 【师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.‎ ‎ 三、小组活动,共同探究 ‎ 【问题牵引】‎ ‎ (1)下列各式从左到右的变形是否为因式分解:‎ ‎ ①(x+1)(x-1)=x2-1;‎ ‎ ②a2-1+b2=(a+1)(a-1)+b2;‎ ‎ ③7x-7=7(x-1).‎ ‎ (2)在下列括号里,填上适当的项,使等式成立.‎ ‎ ①9x2(______)+y2=(3x+y)(_______);‎ ‎ ②x2-4xy+(_______)=(x-_______)2.‎ ‎ 四、随堂练习,巩固深化 ‎ 课本练习.‎ ‎ 【探研时空】计算:993-99能被100整除吗?‎ ‎ 五、课堂总结,发展潜能 由学生自己进行小结,教师提出如下纲目:‎ ‎ 1.什么叫因式分解?‎ ‎ 2.因式分解与整式运算有何区别?‎ ‎ 六、布置作业,专题突破 ‎ 选用补充作业.‎ ‎ 板书设计 ‎§14.3 因式分解 ‎1、因式分解 例:‎ ‎ 练习:‎ ‎ 教学反思 在刚学多项式因式分解时,非常重要的一点是能否正确理解因式分解与整式乘法的区别和联系.(2)判断多项式是否为因式分解,需要注意:①因式分解不是加、减、乘、除、乘方、开方的运算,而是把多项式由一种形式变成另一种形式;②一个多项式的变形是不是因式分解,关键要看变形后的多项式是否为几个整式的乘积.整式可以是单项式,也可以是多项式.(3)因式分解是一种恒等变形,因式分解与整式乘法是互为相反的一种恒等变形,检验因式分解的结果是否正确,可以利用整式乘法运算看是否与原多项式相等,相同因式之积应写成幂的形式. ‎ ‎§14.3.1 提公因式法 ‎ 教学目标 ‎ 1.知识与技能 ‎ 能确定多项式各项的公因式,会用提公因式法把多项式分解因式.‎ ‎ 2.过程与方法 ‎ 使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.‎ ‎ 3.情感、态度与价值观 ‎ 培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.‎ ‎ 重、难点与关键 ‎ 1.重点:掌握用提公因式法把多项式分解因式.‎ ‎ 2.难点:正确地确定多项式的最大公因式.‎ ‎ 3.关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.‎ ‎ 教学方法:采用“启发式”教学方法.‎ ‎ 教学过程 ‎ 一、回顾交流,导入新知 ‎ 【复习交流】‎ ‎ 下列从左到右的变形是否是因式分解,为什么?‎ ‎ (1)2x2+4=2(x2+2); (2)2t2-3t+1=(2t3-3t2+t);‎ ‎ (3)x2+4xy-y2=x(x+4y)-y2; (4)m(x+y)=mx+my;‎ ‎ (5)x2-2xy+y2=(x-y)2.‎ ‎ 问题:‎ ‎ 1.多项式mn+mb中各项含有相同因式吗?‎ ‎ 2.多项式4x2-x和xy2-yz-y呢?‎ ‎ 请将上述多项式分别写成两个因式的乘积的形式,并说明理由. ‎ ‎ 【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.‎ ‎ ‎ ‎ 概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.‎ ‎ 二、小组合作,探究方法 ‎【教师提问】 多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么? ‎ ‎【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.‎ ‎ 三、范例学习,应用所学 ‎ 【例1】把-4x2yz-12xy2z+4xyz分解因式.‎ ‎ 解:-4x2yz-12xy2z+4xyz ‎ =-(4x2yz+12xy2z-4xyz)‎ ‎ =-4xyz(x+3y-1)‎ ‎ 【例2】分解因式,3a2(x-y)3-4b2(y-x)2‎ ‎ 【思路点拨】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法.‎ ‎ 解法1:3a2(x-y)3-4b2(y-x)2‎ ‎ =-3a2(y-x)3-4b2(y-x)2‎ ‎ =-[(y-x)2·3a2(y-x)+4b2(y-x)2]‎ ‎ =-(y-x)2 [3a2(y-x)+4b2]‎ ‎ =-(y-x)2(3a2y-3a2x+4b2)‎ ‎ 解法2:3a2(x-y)3-4b2(y-x)2‎ ‎ =(x-y)2·3a2(x-y)-4b2(x-y)2‎ ‎ =(x-y)2 [3a2(x-y)-4b2]‎ ‎ =(x-y)2(3a2x-3a2y-4b2)‎ ‎ 【例3】用简便的方法计算:0.84×12+12×0.6-0.44×12.‎ ‎ 【教师活动】引导学生观察并分析怎样计算更为简便.‎ ‎ 解:0.84×12+12×0.6-0.44×12‎ ‎ =12×(0.84+0.6-0.44)‎ ‎ =12×1=12.‎ ‎ 【教师活动】在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?‎ ‎ 四、随堂练习,巩固深化 ‎ 课本P115练习第1、2、3题.‎ ‎ 【探研时空】‎ ‎ 利用提公因式法计算:‎ ‎ 0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69‎ ‎ 五、课堂总结,发展潜能 ‎ 1.利用提公因式法因式分解,关键是找准最大公因式.在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.‎ ‎ 2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.‎ ‎ 六、布置作业,专题突破 ‎ 课本P119习题14.4第1、4(1)、6题.‎ ‎ 板书设计 ‎§14.3.1提公因式法 ‎1、提公因式法 例:‎ ‎ 练习:‎ ‎ ‎ 教学反思 ‎ 通过比较归纳使学生对公因式的概念有更深刻的认识,所谓公因式通俗地说就是多项式的各项中共有的“东西”,这个“东西”应从数、相同字母、相同字母的个数(即最低次数)这几个方面进行考虑,这个“东西”有时还可以是一个多项式. ‎ ‎§14.3.2公式法(一)‎ ‎ 教学目标 ‎ 1.知识与技能 ‎ 会应用平方差公式进行因式分解,发展学生推理能力.‎ ‎ 2.过程与方法 ‎ 经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.‎ ‎ 3.情感、态度与价值观 ‎ 培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.‎ ‎ 重、难点与关键 ‎ 1.重点:利用平方差公式分解因式.‎ ‎ 2.难点:领会因式分解的解题步骤和分解因式的彻底性.‎ ‎ 3.关键:应用逆向思维的方向,演绎出平方差公式,对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.‎ ‎ 教学方法 ‎ 采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.‎ ‎ 教学过程 ‎ 一、观察探讨,体验新知 ‎ 【问题牵引】‎ ‎ 请同学们计算下列各式.‎ ‎ (1)(a+5)(a-5); (2)(4m+3n)(4m-3n).‎ ‎ 【学生活动】动笔计算出上面的两道题,并踊跃上台板演.‎ ‎ (1)(a+5)(a-5)=a2-52=a2-25;‎ ‎ (2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.‎ ‎【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.‎ ‎1.分解因式:a2-25; 2.分解因式16m2-9n.‎ ‎ 【学生活动】从逆向思维入手,很快得到下面答案:‎ ‎ (1)a2-25=a2-52=(a+5)(a-5).‎ ‎ (2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).‎ ‎ 【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.‎ ‎ 平方差公式:a2-b2=(a+b)(a-b).‎ ‎ 评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).‎ ‎ 二、范例学习,应用所学 ‎ 【例1】把下列各式分解因式:(投影显示或板书)‎ ‎ (1)x2-9y2; (2)16x4-y4;‎ ‎ (3)12a2x2-27b2y2; (4)(x+2y)2-(x-3y)2;‎ ‎ (5)m2(16x-y)+n2(y-16x).‎ ‎ 【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.‎ ‎ 【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.‎ ‎ 【学生活动】分四人小组,合作探究.‎ ‎ 解:(1)x2-9y2=(x+3y)(x-3y);‎ ‎ (2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);‎ ‎ (3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);‎ ‎ (4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x-y);‎ ‎ (5)m2(16x-y)+n2(y-16x)‎ ‎ =(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).‎ ‎ 三、随堂练习,巩固深化 ‎ 课本P116练习第1、题.‎ ‎ 【探研时空】‎ ‎ 1.求证:当n是正整数时,n3-n的值一定是6的倍数.‎ ‎ 2.试证两个连续偶数的平方差能被一个奇数整除.连续偶数的平方差能被一个奇数整除.‎ ‎ 四、课堂总结,发展潜能 ‎ 运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.‎ ‎ 五、布置作业,专题突破 ‎ 课本P119习题14.3第2、4(2)、11题.‎ ‎ 板书设计 ‎§14.3.2 公式法(一)‎ ‎1、平方差公式: 例:‎ ‎ a2-b2=(a+b)(a-b) 练习:‎ 教学反思:‎ ‎ 因式分解是一个重要的内容,也是难点,我认为我对教材内容的把握和讲解是比较到位的,但是我忽略了学生的接受能力,也没有注意到计算题在练习方面的巩固及题型的多样化。在以后的教学中应该更多结合学生的学习情况去调整教学方法和内容,多发现学生在学习方面的优势和不足之处。 ‎ ‎§14.3.2公式法(二) ‎ ‎ 教学目标 ‎ 1.知识与技能 ‎ 领会运用完全平方公式进行因式分解的方法,发展推理能力.‎ ‎ 2.过程与方法 ‎ 经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.‎ ‎ 3.情感、态度与价值观 ‎ 培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.‎ ‎ 重、难点与关键 ‎ 1.重点:理解完全平方公式因式分解,并学会应用.‎ ‎ 2.难点:灵活地应用公式法进行因式分解.‎ ‎ 3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的.‎ ‎ 教学方法 ‎ 采用“自主探究”教学方法,在教师适当指导下完成本节课内容.‎ ‎ 教学过程 ‎ 一、回顾交流,导入新知 ‎ 【问题牵引】‎ ‎ 1.分解因式:‎ ‎(1)-9x2+4y2; (2)(x+3y)2-(x-3y)2; (3)x2-0.01y2.‎ ‎ 【知识迁移】‎ ‎ 2.计算下列各式:‎ ‎ (1)(m-4n)2; (2)(m+4n)2; (3)(a+b)2; (4)(a-b)2. ‎ ‎ 【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律.‎ ‎ 3.分解因式:‎ ‎ (1)m2-8mn+16n2 (2)m2+8mn+16n2;(3)a2+2ab+b2; (4)a2-2ab+b2.‎ ‎ 【学生活动】从逆向思维的角度入手,很快得到下面答案:‎ ‎ 解:(1)m2-8mn+16n2=(m-4n)2; (2)m2+8mn+16n2=(m+4n)2;‎ ‎ (3)a2+2ab+b2=(a+b)2; (4)a2-2ab+b2=(a-b)2.‎ ‎ 【归纳公式】完全平方公式a2±2ab+b2=(a±b)2.‎ ‎ 二、范例学习,应用所学 【例1】把下列各式分解因式:‎ ‎ (1)-4a2b+12ab2-9b3; (2)8a-4a2-4;‎ ‎ (3)(x+y)2-14(x+y)+49; (4)+n4. ‎ ‎ 【例2】如果x2+axy+16y2是完全平方,求a的值.‎ ‎ 【思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3.‎ ‎ 三、随堂练习,巩固深化 ‎ 课本P117练习第2题.‎ ‎ 【探研时空】‎ ‎ 1.已知x+y=7,xy=10,求下列各式的值.‎ ‎(1)x2+y2; (2)(x-y)2 2.已知x+=-3,求x4+的值.‎ ‎ 四、课堂总结,发展潜能 ‎ 由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个:‎ ‎ a2-b2=(a+b)(a-b); a2±ab+b2=(a±b)2.‎ ‎ 在运用公式因式分解时,要注意:‎ ‎ ‎ ‎ (1)每个公式的形式与特点,通过对多项式的项数、次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;(2)在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;(3)当多项式各项有公因式时,应该首先考虑提公因式,然后再运用公式分解.‎ ‎ 五、布置作业,专题突破 课本P119习题15.4第3、5、7、8题.‎ ‎ 板书设计 ‎§14.3.2 公式法(二)‎ ‎1、完全平方公式: 例:‎ a2±2ab+b2=(a±b)2 练习:‎ 教学反思 ‎ 在数学教学过程中,知识的传授不应只是教师单纯地讲解与学生简单的模仿,而应通过教学活动,让学生经历知识的形成与应用过程,从而使学生更好的理解知识的意义,掌握必要的技能,发展应用数学的意识,增强学好数学的愿望与信心。根据新课程标准要求和学生的起点能力,本节课的具体目标有两个,一个是会用完全平方公式分解因式,一个是会综合运用提取公因式法、公式法分解因式。‎

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料