第十四章 整式的乘除与因式分解复习
教学目标
1.知识与技能
能熟练掌握整式的概念、运算性质和因式分解的概念、分解方法,逐步形成知识结构.
2.过程与方法
通过图形的变化,从直观认识的角度领会整式运算及因式分解的知识,渗透数形结合的思想.
3.情感、态度与价值观
提高学生解决问题的能力,发展推理思维,体会数学的应用价值,增强自信心.
重、难点与关键
1.重点:熟练掌握整式,因式分解的解题方法.
2.难点:灵活地应用乘法公式进行运算或因式分解.
3.关键:系统把握知识点,从互逆的思想弄清整式运算与因式分解的关系.
教学方法
采取对知识系统“演绎”、“提升”的教学方法.
教学过程
一、数形结合,直观演绎
【解释与比较】
观察下列图形,写出相关的整式乘法公式:
(1)如图1所示.
(2)如图2所示.
(3)如图3所示.
(4)如下图在宽为a的正方形空地上修两条互相垂直宽度为b的水泥路,其余的部分种植草坪,你能计算出草坪的面积吗?
【教师提问】a2-2ab+b2=(a-b)2,请你用图形反映(a-b)2的结果,由图5可得等式(a+b)2=(a-b)2+______.
【辨析与理解】
(1)(x-y)2=x2-y2;
(2)(x+y)(y-x)=x2-y2;
(3)(x+3y)(x-3y)=x2-3y2;
(4)(x-3y)2=x2-3xy-3y2.
(5)分解因式:x2-4=(x-2)2;
(6)分解因式:a2±2ab+b2=(a±b)(ab)
【运算与方法】
1.把图6左框里的等式分别乘以(x+3y),所得的积分别写在右框相应的位置上.
2.利用乘法公式计算:
(1)102 (2)301×299 (3)(m+n)2(m-n)2
3.已知:(x+a)(x+b)=x2+(a+b)x+ab,利用这个等式计算:
(x-3)(x+7)=_______.
(x+5)(x+9)=_______.
【运用与探究】
1.一个正方体的边长为3cm,则它的体积为多少?表面积为多少?
2.一块长方形花坛的面积为2a2x-4ax3m2,长为2axm,求它的宽.
3.长方形花坛的宽为m米,长比宽多4米,若将长和宽分别增加3米,则增加后长方形的面积为多少?如果已知增加后面积增加了15平方米,请计算出原来的长和宽来.
4.有一个正方形的边长为正整数,现将它的边长逐次增加
(每次增加1),考察其面积的增加量,记录如下.(如图7所示)
原边长
1
2
3
4
…
原面积
1
4
9
16
…
增加后的边长
2
3
4
5
…
增加后的面积
4
9
16
25
…
面积的增加量
3
5
7
9
…
探索面积的增加量,有怎样的规律?请你应用所学知识解释你的发现.
5.设a表示一个两位数,b表示一个三位数,把a放在b的左边,组成一个五位数m,把b放在a左边组成一个五位数n,试问m-n能被9整除吗?试说明理由.
二、逆向思维,合作学习
做一做:
1.说出下列各式由左到右的变形是否是因式分解,为什么?
(1)a2-81=(a+9)(a-9);( )
(2)x2-9+14x=(x+3)(x-3)+14x;( )
(3)a+a2b=a2(+b);( )
(4)p(m-n)=pm-pn;( )
(5)m2+2mn+4=(m+2)2;( )
(6)a2+4ab+a=a(a+4b).( )
【课堂演练】
演练题1:把49(m+n)2-(3m-n)2分解因式.
演练题2:分解因式:a3x4-12a3x2y+36a3y2.
三、随堂练习,系统跃进
课本P124复习题15第1(4)、2(3)、4(4)、11题.
【探研时空】
无论x、y取何值,多项式x2+y2-4x+6y+13的值都是非负数,你相信吗?请你谈谈其中的原因.
四、课堂总结,发展潜能
由学生分四人小组进行总结.
五、布置作业,专题突破
课本P124复习题第1(3)(5)、2(4)(6)、3.4(3)、5(3)(4)、6、7、12题.
板书设计
第十四章 整式的乘除与因式分解复习
知识点 例:
练习:
教学反思:
1、 在复习教学中注意两次明确知识的重点、难点和关键
关于因式分解有概念要注意,因式分解是对多项式的一种变形,这是一种恒等的变形,这种变形必须转化为积的形式,这种变形只是在整式范围内进行,因式分解必须分解到每个因式不能再分解为止。因式分解的两种方法,是因式分解的基础,要准确地理解和掌握它们的特点以及适用条件和要求,一般地,提取公因式关键是如何找公因式和每项余下的另一个因式,分工法应明确各个公式的特点,分清项数、系数、次数和符号。至于拓展性问题,应视学生认知的程度适时进行点拨指导,使不同层次的学生得到不同发展。
2、让反思贯穿教学的过程
利用学生学习中的相关错误案例,鼓励学生探究发现自己在知识理解过程中的错误,先行切断错误的知识生长点与新知识的非实质联系,有利于新知识的建构。“反思是数学思维活动的核心,在整个数学活动的各个环节中,都要有意识的引导学生进行反思,形成谁知冲突,这样做有利于明晰问题,激发起探究热情,更有利于总结经验,体会到解题要领。