§2.4等比数列(2)
学习目标
1.灵活应用等比数列的定义及通项公式;深刻理解等比中项概念;
2. 熟悉等比数列的有关性质,并系统了解判断数列是否成等比数列的方法.
学习过程
一、课前准备 (预习教材P51 ~ P54,找出疑惑之处)
复习1:等比数列的通项公式 = . 公比q满足的条件是
复习2:等差数列有何性质?
二、新课导学
※ 学习探究
问题1:如果在a与b中间插入一个数G,使a,G,b成等比数列,则
新知1:等比中项定义
如果在a与b中间插入一个数G,使a,G,b成等比数列,那么称这个数G称为a与b的等比
中项. 即G= (a,b同号). 试试:数4和6的等比中项是 .
问题2:
1.在等比数列{}中,是否成立呢?
2.是否成立?你据此能得到什么结论?
3.是否成立?你又能得到什么结论?
新知2:等比数列的性质
在等比数列中,若m+n=p+q,则.
试试:在等比数列,已知,那么 .
※ 典型例题
例
自选1
自选2
是否等比
是
例1已知是项数相同的等比数
列,仿照表中的例子填写表格,从
中你能得出什么结论?
证明你的结论.
变式:项数相同等比数列{}与{},
数列{}也一定是等比数列吗?证明你的结论.
小结:两个等比数列的积和商仍然是等比数列.
例2在等比数列{}中,已知,且,公比为整数,求.
变式:在等比数列{}中,已知,则 .
※ 动手试试
2
练1. 一个直角三角形三边成等比数列,则( ).
A. 三边之比为3:4:5 B. 三边之比为1::3
C. 较小锐角的正弦为 D. 较大锐角的正弦为
练2. 在7和56之间插入、,使7、、、56成等比数列,若插入、,使7、、、56成等差数列,求+++的值.
三、总结提升
※ 学习小结 1. 等比中项定义; 2. 等比数列的性质.
※ 当堂检测(时量:5分钟 满分:10分)计分:
1. 在为等比数列中,,,那么( ).
A. ±4 B. 4 C. 2 D. 8
2. 若-9,a1,a2,- 1四个实数成等差数列,-9,b1,b2,b3,-1五个实数成等比数列,
则b2(a2-a1)=( ). A.8 B.-8 C.±8 D.
3. 若正数a,b,c依次成公比大于1的等比数列,则当x>1时,,,( )
A.依次成等差数列 B.各项的倒数依次成等差数列
C.依次成等比数列 D.各项的倒数依次成等比数列
4. 在两数1,16之间插入三个数,使它们成为等比数列,则中间数等于 .
5. 在各项都为正数的等比数列中,,则log3+ log3+…+ log3 .
课后作业
1. 在为等比数列中,,,求的值.
2. 已知等差数列的公差d≠0,且,,成等比数列,求.
2