实际问题与二次函数
教学内容
22.3 实际问题与二次函数(1).
教学目标
1.会求二次函数y=ax2+bx+c的最小(大)值.
2.能够从实际问题中抽象出二次函数关系,并运用二次函数及性质解决最小(大)值等实际问题.
教学重点
求二次函数y=ax2+bx+c的最小(大)值.
教学难点
将实际问题转化成二次函数问题.
教学过程
一、导入新课
同学们好,我们上节课学习了二次函数与一元二次方程,可以利用二次函数的图象求一元二次方程的根.对于某些实际问题,如果其中变量之间的关系可以用二次函数模型来刻画,那么我们就可以利用二次函数的图象和性质来进行研究.
二、新课教学
问题 从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t-5t2 (0≤t≤6).小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?
教师引导学生找出问题中的两个变量:小球的高度h(单位:m)与小球的运动时间t(单位:s).然后画出函数h=30t-5t2 (0≤t≤6)的图象(可见教材第49页图).
根据函数图象,可以观察到当t取顶点的横坐标时,这个函数有最大值.也就是说,当小球运动的时间是3s时,小球最高,小球运动中的最大高度是45m.
一般地,当a>0(a<0),抛物线y=ax2+bx+c的顶点是最低(高)点,也就是说,当x=-时,二次函数y=ax2+bx+c有最小(大)值.
探究1 用总长为60 m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少米时,场地的面积S最大?
教师引导学生参照问题1的解法,先找出两个变量,然后写出S关于l的函数解析式,最后求出使S最大的l值.具体步骤可见教材第50页.
三、巩固练习
1.已知一个矩形的周长是100 cm,设它的一边长为x cm,则它的另一边长为______cm,若设面积为s cm2,则s与x的函数关系式是__________,自变量x的取值范围是________.当x等于_____cm时,s最大,为_______ cm2.
2.已知:正方形ABCD的边长为4,E是BC上任意一点,且AE=AF,若EC=x,请写出△AEF的面积y与x之间的函数关系式,并求出x为何值时y最大.
参考答案:
1.50-x,s=x(50-x),0