用列举法求概率
教学内容
25.2 用列举法求概率(1).
教学目标
1.用列举法(列表法)求简单随机事件的概率,进一步培养随机概念.
2.经历实验、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生的概率,渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力.
3.通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯.
教学重点
运用列表法求事件的概率.
教学难点
如何使用列表法.
教学过程
一、导入新课
为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A、B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是1,6,8,转盘B上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同).每次选择2名同学分别拨动A、B两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次).作为游戏者,你会选择哪个装置呢?并请说明理由.
以贴近学生生活的联欢晚会为背景,创设转盘游戏引入,能在最短时间内激发学生的兴趣,引起学生高度的注意力,进入情境,导入新课的教学.
二、新课教学
1.学生分组讨论,探索交流.
在这个环节里,首先要求学生分组讨论,探索交流.然后引导学生将实际问题转化为数学问题,即:停止转动后,哪个转盘指针所指数字较大的可能性更大呢?
由于事件的随机性,我们必须考虑事件发生概率的大小.此时我首先引导学生观看转盘动画,同学们会发现这个游戏涉及A、B两转盘, 即涉及2个因素,与前一课所讲授单转盘概率问题(教材P136例1)相比,可能产生的结果数目增多了,列举时很容易造成重复或遗漏.怎样避免这个问题呢?
实际上,可以将这个游戏分两步进行.于是,指导学生构造表格.
2.指导学生构造表格
A B
4
5
7
1
6
3
8
首先考虑转动A盘:指针可能指向1,6,8三个数字中的任意一个,可能出现的结果就会有3个.接着考虑转动B盘:当A盘指针指向1时,B盘指针可能指向4、5、7三个数字中的任意一个,这是列举法的简单情况.当A盘指针指向6或8时,B盘指针同样可能指向4、5、7三个数字中的任意一个,一共会产生9种不同的结果.
设计意图:这样既分散了难点,又激发了学生兴趣,渗透了转化的数学思想.
3.学生独立填写表格,通过观察与计算,得出结论(即列表法)
A B
4
5
7
1
(1,4)
(1,5)
(1,7)
6
(6,4)
(6,5)
(6,7)
8
(8,4)
(8,5)
(8,7)
从表中可以发现:A盘数字大于B盘数字的结果共有5种.
∴ P(A数较大)=,P(B数较大)= .
∴ P(A数较大)>P(B数较大).
∴ 选择A装置的获胜可能性较大.
在学生填写表格过程中,注意向学生强调数对的有序性.
由于游戏是分两步进行的,我们也可用其他的方法来列举.即先转动A盘,可能出现1,6,8三种结果;第二步考虑转动B盘,可能出现4,5,7三种结果.
4.解法二.
由图知,可能的结果为:
(1,4),(1,5),(1,7),(6,4),(6,5),(6,7),(8,4),(8,5),(8,7),共计9种.
∴ P(A数较大)=,P(B数较大)= .
∴ P(A数较大)> P(B数较大).
∴ 选择A装置的获胜可能性较大.
然后,引导学生对所画图形进行观察:若将图形倒置,你会联想到什么?这个图形很像一棵树,所以称为树形图(在幻灯片上放映).列表和树形图是列举法求概率的两种常用的方法.
设计意图:自然地学生感染了分类计数和分步计数思想.
三、巩固练习
例 同时掷两枚质地均匀的骰子,计算下列事件的概率:
(1)两枚骰子的点数相同;
(2)两枚骰子点数的和是9;
(3)至少有一枚骰子的点数为2.
3
分析:当一次试验是掷两枚骰子时,为不重不漏地列出所有可能的结果,通常采用列表法.
具体过程见教材第137页.
小结:当一个事件要涉及两个因素并且可能出现的结果数目较多时,通常采用列表法.运用列表法求概率的步骤如下:
(1)列表;
(2)通过表格计数,确定公式P(A)=中m和n的值;
(3)利用公式P(A)=计算事件的概率.
四、课堂小结
今天学习了什么?有什么收获?
五、布置作业
习题25.2 第1题.
3