1.1.2弧度制(一)
教学目标
知识与技能目标
理解弧度的意义;了解角的集合与实数集R之间的可建立起一一对应的关系;熟记特殊角的弧度数.
过程与能力目标
能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题
情感与态度目标
通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美.
教学重点
弧度的概念.弧长公式及扇形的面积公式的推导与证明.
教学难点
“角度制”与“弧度制”的区别与联系.
教学过程
一、复习角度制:
初中所学的角度制是怎样规定角的度量的?
规定把周角的作为1度的角,用度做单位来度量角的制度叫做角度制.
二、新课:
1.引 入:
由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢?
2.定 义
我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad.在实际运算中,常常将rad单位省略.
3.思考:
(1)一定大小的圆心角所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?
(2)引导学生完成P6的探究并归纳:
弧度制的性质:
①半圆所对的圆心角为 ②整圆所对的圆心角为
③正角的弧度数是一个正数. ④负角的弧度数是一个负数.
⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|=
4.角度与弧度之间的转换:
3
①将角度化为弧度:
; ;;.
②将弧度化为角度:
;;;.
5.常规写法:
① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数.
② 弧度与角度不能混用.
6.特殊角的弧度
角度
0°
30°
45°
60°
90°
120°
135°
150°
180°
270°
360°
弧度
0
7.弧长公式
弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积.
例1.把67°30'化成弧度.
例2.把化成度.
例3.计算:
;.
例4.将下列各角化成0到2π的角加上2kπ(k∈Z)的形式:
;.
例5.将下列各角化成2kπ + α(k∈Z,0≤α<2π)的形式,并确定其所在的象限.
;.
解: (1)
而是第三象限的角,是第三象限角.
(2) 是第二象限角.
3
证法一:∵圆的面积为,∴圆心角为1rad的扇形面积为,又扇形弧长为l,半径为R,
∴扇形的圆心角大小为rad, ∴扇形面积.
证法二:设圆心角的度数为n,则在角度制下的扇形面积公式为,又此时弧长,∴.
可看出弧度制与角度制下的扇形面积公式可以互化,而弧度制下的扇形面积公式显然要简洁得多.
7.课堂小结①什么叫1弧度角? ②任意角的弧度的定义③“角度制”与“弧度制”的联系与区别.
8.课后作业:
①阅读教材P6 –P8;
②教材P9练习第1、2、3、6题;
③教材P10面7、8题及B2、3题.
3