平面向量数量积的坐标表示、模、夹角教学设计(新人教A版必修4)
加入VIP免费下载

本文件来自资料包: 《平面向量数量积的坐标表示、模、夹角教学设计(新人教A版必修4)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
‎2.4.2‎平面向量数量积的坐标表示、模、夹角 教学目的:‎ ‎1.掌握平面向量数量积运算规律;‎ ‎2.能利用数量积的5个重要性质及数量积运算规律解决有关问题;‎ ‎3.掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题. ‎ 教学重点:平面向量数量积及运算规律.‎ 教学难点:平面向量数量积的应用 教学过程:‎ 一、复习引入:‎ ‎1.平面向量数量积(内积)的定义: ‎ ‎2.两个向量的数量积的性质: 设a、b为两个非零向量,e是与b同向的单位向量.‎ ‎1° e×a = a×e =|a|cosq; ‎2° ‎a^b Û a×b = 0‎ ‎3° 当a与b同向时,a×b = |a||b|;当a与b反向时,a×b = -|a||b|. 特别的a×a = |a|2或 ‎4°cosq = ; 5°|a×b| ≤ |a||b|‎ ‎3.练习:‎ ‎(1)已知|a|=1,|b|=,且(a-b)与a垂直,则a与b的夹角是( )‎ A.60° B.30° C.135° D.45°‎ ‎(2)已知|a|=2,|b|=1,a与b之间的夹角为,那么向量m=a-4b的模为( )‎ A.2 B‎.2‎ C.6 D.12‎ 二、讲解新课:‎ 探究:已知两个非零向量,,怎样用和的坐标表示?.‎ ‎1、平面两向量数量积的坐标表示 两个向量的数量积等于它们对应坐标的乘积的和.即 ‎2. 平面内两点间的距离公式 ‎(1)设,则或.‎ ‎(2)如果表示向量的有向线段的起点和终点的坐标分别为、,‎ 那么(平面内两点间的距离公式)‎ 向量垂直的判定 设,,则 ‎ 3‎ 两向量夹角的余弦() ‎ cosq =‎ 二、讲解范例:‎ 例1 已知A(1, 2),B(2, 3),C(-2, 5),试判断△ABC的形状,并给出证明.‎ 例2 设a = (5, -7),b = (-6, -4),求a·b及a、b间的夹角θ(精确到1o)‎ 分析:为求a与b夹角,需先求a·b及|a|·|b|,再结合夹角θ的范围确定其值.‎ 例3 已知a=(1,),b=(+1,-1),则a与b的夹角是多少?‎ 分析:为求a与b夹角,需先求a·b及|a|·|b|,再结合夹角θ的范围确定其值.‎ 解:由a=(1,),b=(+1,-1)‎ 有a·b=+1+(-1)=4,|a|=2,|b|=2.‎ 记a与b的夹角为θ,则cosθ= 又∵0≤θ≤π,∴θ=‎ 评述:已知三角形函数值求角时,应注重角的范围的确定.‎ 三、课堂练习:1、P107面1、2、3题 ‎ 2、已知A(3,2),B(-1,-1),若点P(x,-)在线段AB的中垂线上,则x= .‎ 四、小结: 1、‎ ‎ 2、平面内两点间的距离公式 ‎ ‎3、向量垂直的判定:‎ 设,,则 ‎ 五、课后作业:《习案》作业二十四。‎ 思考:‎ ‎1、如图,以原点和A(5, 2)为顶点作等腰直角△OAB,使ÐB = 90°,求点B和向量的坐标.‎ 解:设B点坐标(x, y),则= (x, y),= (x-5, y-2)‎ ‎∵^ ∴x(x-5) + y(y-2) = 0即:x2 + y2 -5x - 2y = 0‎ 又∵|| = || ∴x2 + y2 = (x-5)2 + (y-2)2即:10x + 4y = 29‎ 3‎ 由 ‎∴B点坐标或;=或 ‎ ‎2 在△ABC中,=(2, 3),=(1, k),且△ABC的一个内角为直角,求k值.‎ 解:当A = 90°时,×= 0,∴2×1 +3×k = 0 ∴k = ‎ 当B = 90°时,×= 0,=-= (1-2, k-3) = (-1, k-3)‎ ‎∴2×(-1) +3×(k-3) = 0 ∴k = ‎ 当C = 90°时,×= 0,∴-1 + k(k-3) = 0 ∴k =‎ 3‎

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料