简单的三角恒等变换(三)教学设计(新人教A版必修4)
加入VIP免费下载

本文件来自资料包: 《简单的三角恒等变换(三)教学设计(新人教A版必修4)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
‎3.2简单的三角恒等变换(三)‎ 教学目标 知识与技能目标 熟练掌握三角公式及其变形公式.‎ 过程与能力目标 抓住角、函数式得特点,灵活运用三角公式解决一些实际问题.‎ 情感与态度目标 培养学生观察、分析、解决问题的能力.‎ 教学重点 和、差、倍角公式的灵活应用.‎ 教学难点 如何灵活应用和、差、倍角公式的进行三角式化简、求值、证明.‎ 教学过程 例1:教材P141面例4‎ 例1. 如图,已知OPQ是半径为1,圆心角为的扇形,C是扇形弧上的动点,ABCD是扇形的内接矩形.记∠COP=a,求当角a取何值时,矩形ABCD的面积最大?并求出这个最大面积.‎ θ 例2:把一段半径为R的圆木锯成横截面为矩形的木料,怎样锯法能使横截面的面积最大?(分别设边与角为自变量)‎ 解:(1)如图,设矩形长为l,则面积,‎ 所以当且仅当 即时,取得最大值,此时S取得最大值,矩形的宽为 即长、宽相等,矩形为圆内接正方形.‎ ‎(2)设角为自变量,设对角线与一条边的夹角为,矩形长与宽分别为 ‎、,所以面积.‎ 而,所以,当且仅当时,S取最大值,所以当且仅当 2‎ 即时, S取最大值,此时矩形为内接正方形.‎ P Q R S O 变式:已知半径为1的半圆,PQRS是半圆的内接矩形如图,问P点在什么位置时,矩形的面积最大,并求最大面积时的值.‎ 解:设则 故S四边形PQRS 故为时,‎ 课堂小结 ‎ 建立函数模型利用三角恒等变换解决实际问题.‎ 课后作业 ‎ ‎1. 阅读教材P.139到P.142; 2. 《习案》作业三十五.‎ 2‎

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料