2.2 一元二次方程的解法
2.2.2 公式法
教学目标
1、理解求根公式法与配方法的联系.
2、会用求根公式法解一元二次方程.
3、注意培养学生良好的运算习惯.
重点难点
重点:会运用求根公式法解一元二次方程.
难点:由配方法导出一元二次方程的求根公式.
教学过程
(一)创设情境
由用配方法解一元二次方程的基本步骤知:对于每个具体的一元二次方程,都使用了相同的一些计算步骤,这启发我们思考,能不能对一般形式的一元二次方程ax2+bx+c=0(a≠0)使用这些步骤,然后求出解x的公式?
这样做了以后,我们可以运用这个公式来求每一个具体的一元二次方程的解,取得一通百通的效果.
(二)探究新知
按课本P.16的方式引导学生,用配方法导出一元二次方程ax2+bx+c=0(a≠0),当b2-40c≥0时的求根公式为: (b2-4ac≥0).并让学生知道,运用一元二次方程的求根公式直接求每一个一元二次方程的解,这种解一元二次方程的方法叫公式法.
(三)讲解例题
1、展示课本P.16~P.17例10(1),(2),按课本方式引导学生用公式法解一元二次方程,并提醒学生注意a,b,c的符号.
2、引导学生完成P.17例10(3)的填空,并提醒学生在确定a,b,c的值时,先要将一元二次方程式化为一般形式.
3、引导学生归纳用公式法解一元二次方程的基本步骤:首先要把原方程化为一般形式,从而正确地确定a,b,c的值;其次要计算b2-4ac的值,当b2-4ac≥0时,再用求根公式求解.
(四)应用新知
课本P.18练习,第(1)~(4)题.
(五)课堂小结
1、熟记一元二次方程的求根公式,并注意公式成立的条件:a≠0,b2-4ac≥0.
2、熟悉用公式法解一元二次方程的基本步骤.
3、公式法是解一元二次方程的通法,有普遍的适用性,即可以解任何一元二次方程.
1