正弦和余弦
第3课时 余弦
[教学目标]
1、理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。
2、能用函数的观点理解正弦、余弦和正切。
[教学过程]
一、情景创设
1、问题1:如图,小明沿着某斜坡向上行走了13m后,他的相对位置升高了5m,如果他沿着该斜坡行走了20m,那么他的相对位置升高了多少?行走了a m呢?
20m
13m
2、问题2:在上述问题中,他在水平方向又分别前进了多远?
二、探索活动
1、思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值__________;它的邻边与斜边的比值___________。
(根据是______________________________________。)
2、正弦的定义
如图,在Rt△ABC中,∠C=90°,
我们把锐角∠A的对边a与斜边c的比叫做∠A
的______,记作________,
即:sinA=________=________.
3、余弦的定义
如图,在Rt△ABC中,∠C=90°,
我们把锐角∠A的邻边b与斜边c的比叫做∠A的______,记作=_________,
即:cosA=______=_____。
(你能写出∠B的正弦、余弦的表达式吗?)试试看.
___________________________________________________.
4、牛刀小试
根据如图中条件,分别求出下列直角三角形中锐角的正弦、余弦值。
5、思考与探索
怎样计算任意一个锐角的正弦值和余弦值呢?
如图,当小明沿着15°的斜坡行
走了1个单位长度时,他的位置升高了约
0.26个单位长度,在水平方向前进了约
0.97个单位长度。
根据正弦、余弦的定义,可以知道:
sin15°=0.26,cos15°=0.97
(2)你能根据图形求出sin30°、cos30°吗?
sin75°、cos75°呢?
sin30°=_____,cos30°=_____.
sin75°=_____,cos75°=_____.
(3)利用计算器我们可以更快、更精确地求得各个锐角的正弦值和余弦值。
(4)观察与思考:
从sin15°,sin30°,sin75°的值,你们得到什么结论?
____________________________________________________________。
从cos15°,cos30°,cos75°的值,你们得到什么结论?
____________________________________________________________。
当锐角α越来越大时,它的正弦值是怎样变化的?余弦值又是怎样变化的?
____________________________________________________________。
6、锐角A的正弦、余弦和正切都是∠A的__________。
三、随堂练习
1、如图,在Rt△ABC中,∠C=90°,
AC=12,BC=5,则sinA=_____,
cosA=_____,sinB=_____,cosB=_____。
2、在Rt△ABC中,∠C=90°,AC=1,BC=,则sinA=_____,cosB=_______,cosA=________,sinB=_______.
3、如图,在Rt△ABC中,∠C=90°,
BC=9a,AC=12a,AB=15a,tanB=________,
cosB=______,sinB=_______
4、在Rt△ABC中,如果各边长度都扩大3倍,则锐角A的各个三角函数值( )
A、不变化 B、扩大3倍 C、缩小 D、缩小3倍
5、根据图示填空
(1)
(2)
(3)
(4)
6、若0°<α<90°,则下列说法不正确的是( )
A、sinα随α的增大而增大
B、cosα随α的增大而减小
C、tanα随α的增大而增大
D、sinα、cosα、tanα的值都随α的增大而增大
7、在Rt△ABC中,AC=BC,∠C=90°,
求(1)cosA;(2)当AB=4时,求BC的长。
8、在Rt△ABC中,∠C=90°,tanA=,AB=10,求BC和cosB。
四、请你谈谈本节课有哪些收获?
五、拓宽和提高
已知在△ABC中,a、b、c分别为∠A、∠B、∠C的对边,且a:b:c=5:12:13,试求最小角的三角函数值。