任意角的三角函数
教学目的:
知识目标:1.复习三角函数的定义、定义域与值域、符号、及诱导公式;
2.利用三角函数线表示正弦、余弦、正切的三角函数值;
3.利用三角函数线比较两个同名三角函数值的大小及表示角的范围。
能力目标:掌握用单位圆中的线段表示三角函数值,从而使学生对三角函数的定义域、值域有更深的理解。
德育目标:学习转化的思想,培养学生严谨治学、一丝不苟的科学精神;
教学重点:正弦、余弦、正切线的概念。
教学难点:正弦、余弦、正切线的利用。
授课类型:新授课
教学模式:讲练结合
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.三角函数的定义及定义域、值域:
练习1:已知角的终边上一点,且,求的值。
解:由题设知,,所以,得,
从而,解得或.
当时,,
;
当时,,
;
当时,,
.
2.三角函数的符号:
练习2:已知且,
(1)求角的集合;(2)求角终边所在的象限;(3)试判断的符号。
3.诱导公式:
练习3:求下列三角函数的值:
(1), (2), (3).
二、讲解新课:
当角的终边上一点的坐标满足时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。
4
1.单位圆:圆心在圆点,半径等于单位长的圆叫做单位圆。
2.有向线段:
坐标轴是规定了方向的直线,那么与之平行的线段亦可规定方向。
规定:与坐标轴方向一致时为正,与坐标方向相反时为负。
3.三角函数线的定义:
设任意角的顶点在原点,始边与轴非负半轴重合,终边与单位圆相交与点,
过作轴的垂线,垂足为;过点作单位圆的切线,它与角的终边或其反向延
长线交与点.
(Ⅰ)
(Ⅱ)
(Ⅳ)
(Ⅲ)
由四个图看出:
当角的终边不在坐标轴上时,有向线段,于是有
, ,
.
我们就分别称有向线段为正弦线、余弦线、正切线。
说明:
①三条有向线段的位置:正弦线为的终边与单位圆的交点到轴的垂直线段;余弦
线在轴上;正切线在过单位圆与轴正方向的交点的切线上,三条有向线段中两条在单位
4
圆内,一条在单位圆外。
②三条有向线段的方向:正弦线由垂足指向的终边与单位圆的交点;余弦线由原点指向垂
足;正切线由切点指向与的终边的交点。
③三条有向线段的正负:三条有向线段凡与轴或轴同向的为正值,与轴或轴反向的
为负值。
④三条有向线段的书写:有向线段的起点字母在前,终点字母在后面。
4.例题分析:
例1.作出下列各角的正弦线、余弦线、正切线。
(1); (2); (3); (4).
解:图略。
例2.利用三角函数线比较下列各组数的大小:
1° 与 2° tan与tan 3° cot与cot
A
B
o
T2
T1
S2 S1
P2
P1
M2 M1 S1
解: 如图可知:
tan tan
cot cot
例4.利用单位圆写出符合下列条件的角的范围。
4
(1); (2);
(3)且;
(4); (5)且.
答案:(1);(2);
(3);(4);
(5).
三、巩固与练习
四、小 结:本节课学习了以下内容:
1.三角函数线的定义;
2.会画任意角的三角函数线;
3.利用单位圆比较三角函数值的大小,求角的范围。
4