勾股定理的逆定理第1课时教学设计(新人教版)
加入VIP免费下载

本文件来自资料包: 《勾股定理的逆定理第1课时教学设计(新人教版)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
第十七章 勾股定理 ‎17.2 勾股定理的逆定理(1)‎ ‎【教学目标】‎ 知识与技能 体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。‎ 过程与方法 探究勾股定理的逆定理的证明方法。‎ 情感、态度与价值观 理解原命题、逆命题、逆定理的概念及关系。‎ ‎【教学重难点】‎ 重点:掌握勾股定理的逆定理及简单应用。‎ 难点:勾股定理的逆定理的证明。‎ ‎【导学过程】‎ ‎【知识回顾】‎ 回忆勾股定理的内容. ‎ 题设(条件): ‎ 结论:a2+b2=c2 ‎ ‎【新知探究】‎ 探究一、 据说,古埃及人曾用下面的方法画直角:把一根长绳打上等距离的13 个结,然后以3 个结间距,4 个结间距、5 个结间距的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.你认为结论正确吗?‎ ‎1.如果三角形的三边分别为3,4,5,这些数满足关系:32+42=52,围成的三角形是直角三角形.‎ ‎2.动手画一画: 下列各组数中的两数平方和等于第三数的平方,分别以这些数为边长画出三角形(单位:cm),它们是直角三角形吗?‎ ‎ ① 2.5,6,6.5; ② 4,7.5,8.5. ‎ 图17.2-2‎ 探究二、如图17.2-2若△ABC的三边长、、满足,试证明△ABC是直角三角形,请简要地写出证明过程.‎ ‎1.此定理与勾股定理之间有怎样的关系?‎ ‎(1)什么叫互为逆命题 ‎(2)什么叫互为逆定理 ‎(3)任何一个命题都有 _____,但任何一个定理未必都有 __‎ ‎2.说出下列命题的逆命题。这些命题的逆命题成立吗?‎ 两直线平行,内错角相等;‎ 如果两个实数相等,那么它们的绝对值相等;‎ 全等三角形的对应角相等;‎ 3‎ 角的内部到角的两边距离相等的点在角的平分线上。‎ 探究三、例1:判断由线段、、组成的三角形是不是直角三角形:‎ ‎(1); (2).‎ ‎(3); (4);‎ ‎2.如果三条线段长a,b,c满足,这三条线段组成的三角形是不是直角三角形?为什么?‎ ‎3.A,B,C三地的两两距离如图所示,A地在B地的正东方向,C地在B地的什么方向?‎ ‎4.思考:我们知道3、4、5是一组勾股数,那么3k、4k、5k(k是正整数)也是一组勾股数吗?一般地,如果a、b、c是一组勾股数,那么ak、bk、ck(k是正整数)也是一组勾股数吗?请写出你所知道的几组勾股数。‎ ‎【知识梳理】‎ ‎(1)勾股定理的逆定理的内容是什么?它有什么作用?‎ ‎(2)本节课我们学习了原命题,逆命题等知识,你 能说出它们之间的关系吗?‎ ‎(3)在探究勾股定理的逆定理的过程中,我们经历了哪些过程?‎ ‎【随堂练习】‎ ‎1.下列各命题都成立,写出它们的逆命题,这些逆命题成立吗?‎ ‎ (1)内错角相等,两直线平行;‎ ‎ (2)对顶角相等;‎ ‎ (3)全等三角形的对应角相等;‎ ‎ (4)如果两个实数相等,那么它们的绝对值相等.‎ ‎2.以下列数组为三角形的边长:(1)5,12, 13;(2)10,12,13;(3)7,24,25;(4)6,8,10,其中能构成直角三角形的有( )‎ ‎ A.4组 B.3组 C.2组 D.1组 ‎3.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,如图,其中正确的是( )‎ 3‎ ‎ ‎ ‎4.下列命题中,真命题是( )‎ A.如果三角形三个角的度数比是3:4:5,那么这个三角形是直角三角形 B.如果直角三角形两直角边的长分别为a和b,那么斜边的长为a2+b2‎ C.若三角形三边长的比为1:2:3,则这个三角形是直角三角形 D.如果直角三角形两直角边分别为a和b,斜边为c,那么斜边上的高h的长为 3‎

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料