向量数乘运算及其几何意义教案(新人教A版必修4)
加入VIP免费下载

本文件来自资料包: 《向量数乘运算及其几何意义教案(新人教A版必修4)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
‎2.2.3 向量数乘运算及其几何意义 一、教学分析 向量的数乘运算,其实是加法运算的推广及简化,与加法、减法统称为向量的三大线性运算.教学时从加法入手,引入数乘运算,充分展现了数学知识之间的内在联系.实数与向量的乘积,仍然是一个向量,既有大小,也有方向.特别是方向与已知向量是共线向量,进而引出共线向量定理.共线向量定理是本章节中重要的内容,应用相当广泛,且容易出错.尤其是定理的前提条件:向量a是非零向量.共线向量定理的应用主要用于证明点共线或平行等几何性质,且与后续的知识有着紧密的联系.‎ 二、教学目标 ‎1、知识与技能:‎ 通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义;掌握共线向量的充要条件。‎ ‎2、过程与方法:‎ 由几个向量的和得出向量数乘运算的含义,从特殊到一般,经历向量数乘概念的形成,探究共线向量的充要条件,培养学生类比归纳的能力。‎ ‎3、情感态度与价值观:‎ 初步体会实数与向量的乘积的含义及其几何意义,形成归纳、猜想与论证的能力。‎ 三、重点难点 教学重点:1.实数与向量积的意义.2.实数与向量积的运算律.3.两个向量共线的等价条件及其运用.‎ 教学难点:对向量共线的等价条件的理解运用.‎ 四、教学设想 ‎(一)导入新课 思路1.前面两节课,我们一起学习了向量加减法运算,这一节,我们将在加法运算基础上研究相同向量和的简便计算及推广.在代数运算中,a+a+a=3a,故实数乘法可以看成是相同实数加法的简便计算方法,那么相同向量的求和运算是否也有类似的简便计算.‎ 思路2.一物体做匀速直线运动,一秒钟的位移对应的向量为a,那么在同一方向上3秒钟的位移对应的向量怎样表示?是3a吗?怎样用图形表示?由此展开新课.‎ ‎(二)推进新课、新知探究、提出问题 ‎①已知非零向量a,试一试作出a+a+a和(-a)+(-a)+(-a).‎ ‎②你能对你的探究结果作出解释,并说明它们的几何意义吗?‎ ‎③引入向量数乘运算后,你能发现数乘向量与原向量之间的位置关系吗?怎样理解两向量平行?与两直线平行有什么异同?‎ 活动:引导学生回顾相关知识并猜想结果,对于运算律的验证,点拨学生通过作图来进行.通过学生的动手作图,让学生明确向量数乘运算的运算律及其几何意义.教师要引导学生特别注意0·a=0,而不是0·a=0.这个零向量是一个特殊的向量,它似乎很不起眼,但又处处存在,稍不注意就会出错,所以要引导学生正确理解和处理零向量与非零向量之间的关系.实数与向量可以求积,但是不能进行加、减运算,比如λ+a,λ-a都无法进行.向量数乘运算的运算律与实数乘法的运算律很相似,只是数乘运算的分配律有两种不同的形式:(λ+μ)a=λa+μa和λ(a+b)=λa+λb 6‎ ‎,数乘运算的关键是等式两边向量的模相等,方向相同.判断两个向量是否平行(共线),实际上就是看能否找出一个实数,使得这个实数乘以其中一个向量等于另一个向量.一定要切实理解两向量共线的条件,它是证明几何中的三点共线和两直线平行等问题的有效手段.‎ 对问题①,学生通过作图1可发现,=++=a+a+a.类似数的乘法,可把a+a+a记作3a,即=3a.显然3a的方向与a的方向相同,3a的长度是a的长度的3倍,即|3a|=3|a|.同样,由图1可知,‎ 图1‎ ‎==(-a)+(-a)+(-a),‎ 即(-a)+(-a)+(-a)=3(-a).显然3(-a)的方向与a的方向相反,3(-a)的长度是a的长度的3倍,这样,3(-a)=-3a.‎ 对问题②,上述过程推广后即为实数与向量的积.‎ 我们规定实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,它的长度与方向规定如下:‎ ‎(1)|λa|=|λ||a|;‎ ‎(2)当λ>0时,λa的方向与a的方向相同;当λ|2a+b| B.|2a||a+2b|D.|2b|

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料