课题
1.1两个基本原理
分类加法计数原理与分步乘法计数原理
第一课时
教学目标
知识与技能:①理解分类加法计数原理与分步乘法计数原理;
②会利用两个原理分析和解决一些简单的应用问题;
过程与方法:培养学生的归纳概括能力;
情感、态度与价值观:引分类计数原理与分步计数原理导学生形成 “自主学习”与“合作学习”等良好的学习方式
教学重点
教学难点
分类加法计数原理与分步乘法计数原理的应用理解
利用两个原理分析和解决一些简单的应用问题
教具准备:与教材内容相关的资料。
教学设想:引导学生形成 “自主学习”与“合作学习”等良好的学习方式。
教学过程:
学生探究过程:
问题 1. 从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中,火车有4 班, 汽车有2班,轮船有3班。那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?
分析: 从甲地到乙地有3类方法,
第一类方法, 乘火车,有4种方法;
第二类方法, 乘汽车,有2种方法;
第三类方法, 乘轮船, 有3种方法;
所以 从甲地到乙地共有 4 + 2 + 3 = 9 种方法。
A村
B村
C村
北
南
中
北
南
问题 2. 如图,由A村去B村的道路有3条,由B村去C村的道路有2条。从A村经B村去C村,共有多少种不同的走法?
分析: 从A村经 B村去C村有2步,
第一步, 由A村去B村有3种方法,
第二步, 由B村去C村有3种方法,
所以 从A村经 B村去C村共有 3 ×2 = 6 种不同的方法。
分类计数原理 完成一件事,有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法。那么完成这件事共有
N=m1+m2+…+mn
种不同的方法。
分步计数原理 完成一件事,需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事有
N=m1×m2×…×mn
种不同的方法。
、㈢ 例题
1. 某班级有男三好学生5人,女三好学生4人。
(1)从中任选一人去领奖, 有多少种不同的选法?
(2) 从中任选男、女三好学生各一人去参加座谈会, 有多少种不同的选法?
2
分析: (1) 完成从三好学生中任选一人去领奖这件事,共有2类办法,
第一类办法, 从男三好学生中任选一人, 共有 m1 = 5 种不同的方法; 第二类办法, 从女三好学生中任选一人, 共有 m2 = 4 种不同的方法; 所以, 根据分类原理, 得到不同选法种数共有 N = 5 + 4 = 9 种。
(2) 完成从三好学生中任选男、女各一人去参加座谈会这件事, 需分2步完成,
第一步, 选一名男三好学生,有 m1 = 5 种方法;
第二步, 选一名女三好学生,有 m2 = 4 种方法;
所以, 根据分步原理, 得到不同选法种数共有 N = 5 × 4 = 20 种。
例2
1在图1-1-3(1)的电路中,只合上一只开关以接通电路,有多少种不同的方法?
2在图1-1-3(2)的电路中,合上两只开关以接通电路,有多少种不同的方法
图见书本第7页
分析略
例3为了确保电子信箱的安全,在注册时,通常要设置电子信箱密码,在某网站设置的信箱中,
1密码为4位,每位均为0到9这10个数字中的一个数字,这样的密码共有多少个?
2密码为4位,每位是0到9这10个数字中的一个,或是从A到Z这26个英文字母中的1个,这样的密码共有多少个?
3密码为4-6位,每位均为0到10个数字中的一个,这样的密码共有多少个?
分析略
巩固练习:书本第9页 练习 1,2,3 习题1. 1 1,2
课外作业:第9页 习题 1. 1 3 , 4 , 5
教学反思:
分配问题
把一些元素分给另一些元素来接受.这是排列组合应用问题中难度较大的一类问题.因为这涉及到两类元素:被分配元素和接受单位.而我们所学的排列组合是对一类元素做排列或进行组合的,于是遇到这类问题便手足无措了.
事实上,任何排列问题都可以看作面对两类元素.例如,把10个全排列,可以理解为在10个人旁边,有序号为1,2,……,10的10把椅子,每把椅子坐一个人,那么有多少种坐法?这样就出现了两类元素,一类是人,一类是椅子。于是对眼花缭乱的常见分配问题,可归结为以下小的“方法结构”:
①.每个“接受单位”至多接受一个被分配元素的问题方法是,这里.其中是“接受单位”的个数。至于谁是“接受单位”,不要管它在生活中原来的意义,只要.个数为的一个元素就是“接受单位”,于是,方法还可以简化为.这里的“多”只要“少”
②.被分配元素和接受单位的每个成员都有“归宿”,并且不限制一对一的分配问题,方法是分组问题的计算公式乘以
2