回归分析教案2(苏教版选修2-3)
加入VIP免费下载

高中数学 3.2 回归分析教案2 苏教版选修2-3.doc

本文件来自资料包:《回归分析教案2(苏教版选修2-3)》

共有 1 个子文件

本文件来自资料包: 《回归分析教案2(苏教版选修2-3)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
‎3.2回归分析(2)‎ 教学目标 ‎(1)通过实例了解相关系数的概念和性质,感受相关性检验的作用;‎ ‎(2)能对相关系数进行显著性检验,并解决简单的回归分析问题;‎ ‎(3)进一步了解回归的基本思想、方法及初步应用.‎ 教学重点,难点 相关系数的性质及其显著性检验的基本思想、操作步骤.‎ 教学过程 一.问题情境 ‎1.情境:下面是一组数据的散点图,若求出相应的线性回归方程,求出的线性回归方程可以用作预测和估计吗?‎ ‎2.问题:思考、讨论:求得的线性回归方程是否有实际意义.‎ 二.学生活动 对任意给定的样本数据,由计算公式都可以求出相应的线性回归方程,但求得的线性回归方程未必有实际意义.左图中的散点明显不在一条直线附近,不能进行线性拟合,求得的线性回归方程是没有实际意义的;右图中的散点基本上在一条直线附近,我们可以粗略地估计两个变量间有线性相关关系,但它们线性相关的程度如何,如何较为精确地刻画线性相关关系呢?‎ 这就是上节课提到的问题①,即模型的合理性问题.为了回答这个问题,我们需要对变量与的线性相关性进行检验(简称相关性检验).‎ 三.建构数学 ‎ ‎1.相关系数的计算公式:‎ 对于,随机取到的对数据,样本相关系数的计算公式为 ‎.‎ 5‎ ‎2.相关系数的性质:‎ ‎ (1);‎ ‎ (2)越接近与1,,的线性相关程度越强;‎ ‎ (3)越接近与0,,的线性相关程度越弱.‎ 可见,一条回归直线有多大的预测功能,和变量间的相关系数密切相关.‎ ‎3.对相关系数进行显著性检验的步骤:‎ ‎ 相关系数的绝对值与1接近到什么程度才表明利用线性回归模型比较合理呢?这需要对相关系数进行显著性检验.对此,在统计上有明确的检验方法,基本步骤是:‎ ‎(1)提出统计假设:变量,不具有线性相关关系;‎ ‎(2)如果以的把握作出推断,那么可以根据与(是样本容量)在附录(教材P111)中查出一个的临界值(其中称为检验水平);‎ ‎(3)计算样本相关系数;‎ ‎(4)作出统计推断:若,则否定,表明有的把握认为变量与之间具有线性相关关系;若,则没有理由拒绝,即就目前数据而言,没有充分理由认为变量与之间具有线性相关关系.‎ 说明:1.对相关系数进行显著性检验,一般取检验水平,即可靠程度为.‎ ‎2.这里的指的是线性相关系数,的绝对值很小,只是说明线性相关程度低,不一定不相关,可能是非线性相关的某种关系.‎ ‎3.这里的是对抽样数据而言的.有时即使,两者也不一定是线性相关的.故在统计分析时,不能就数据论数据,要结合实际情况进行合理解释.‎ ‎4.对于上节课的例1,可按下面的过程进行检验:‎ ‎(1)作统计假设:与不具有线性相关关系;‎ ‎(2)由检验水平与在附录中查得;‎ ‎(3)根据公式得相关系数;‎ ‎(4)因为,即,所以有﹪的把握认为与之间具有线性相关关系,线性回归方程为是有意义的.‎ 5‎ 四.数学运用 ‎1.例题:‎ 例1.下表是随机抽取的对母女的身高数据,试根据这些数据探讨与之间的关系.‎ 母亲身高 女儿身高 解:所给数据的散点图如图所示:由图可以看出,这些点在一条直线附近, ‎ 因为,,‎ ‎,‎ ‎,‎ ‎, ‎ 所以,‎ 由检验水平及,在附录中查得,因为,所以可以认为与之间具有较强的线性相关关系.线性回归模型中的估计值分别为 5‎ ‎ ,‎ 故对的线性回归方程为.‎ 例2.要分析学生高中入学的数学成绩对高一年级数学学习的影响,在高一年级学生中随机抽取名学生,分析他们入学的数学成绩和高一年级期末数学考试成绩如下表:‎ 学生编号 入学成绩 高一期末成绩 ‎(1)计算入学成绩与高一期末成绩的相关系数;‎ ‎(2)如果与之间具有线性相关关系,求线性回归方程;‎ ‎(3)若某学生入学数学成绩为分,试估计他高一期末数学考试成绩.‎ 解:(1)因为,,‎ ‎,,‎ ‎.‎ 因此求得相关系数为.‎ 结果说明这两组数据的相关程度是比较高的;‎ 小结解决这类问题的解题步骤:‎ ‎ (1)作出散点图,直观判断散点是否在一条直线附近;‎ ‎ (2)求相关系数;‎ ‎ (3)由检验水平和的值在附录中查出临界值,判断与是否具有较强的线性相关关系; (4)计算,,写出线性回归方程.‎ ‎2.练习:练习第题.‎ 五.回顾小结:‎ 5‎ ‎1.相关系数的计算公式与回归系数计算公式的比较;‎ ‎2.相关系数的性质;‎ ‎3.探讨相关关系的基本步骤.‎ 六.课外作业:习题3.2第题.‎ 5‎

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料