专题10 统计知识初步
聚焦考点☆温习理解
一、平均数
1、平均数的概念
(1)平均数:一般地,如果有n个数那么,叫做这n个数的平均数,读作“x拔”。
(2)加权平均数:如果n个数中,出现次,出现次,…,出现次(这里),那么,根据平均数的定义,这n个数的平均数可以表示为,这样求得的平均数叫做加权平均数,其中叫做权。
2、平均数的计算方法
(1)定义法
当所给数据比较分散时,一般选用定义公式:
(2)加权平均数法:
当所给数据重复出现时,一般选用加权平均数公式:,其中。
(3)新数据法:
当所给数据都在某一常数a的上下波动时,一般选用简化公式:。
其中,常数a通常取接近这组数据平均数的较“整”的数,,,…,。是新数据的平均数(通常把叫做原数据,叫做新数据)。
二、统计学中的几个基本概念
1、总体
所有考察对象的全体叫做总体。
17
2、个体
总体中每一个考察对象叫做个体。
3、样本
从总体中所抽取的一部分个体叫做总体的一个样本。
4、样本容量
样本中个体的数目叫做样本容量。
5、样本平均数
样本中所有个体的平均数叫做样本平均数。
6、总体平均数
总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。
三、众数、中位数
1、众数
在一组数据中,出现次数最多的数据叫做这组数据的众数。
2、中位数
将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
四、方差
1、方差的概念
在一组数据中,各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差。通常用“”表示,即
2、方差的计算
(1)基本公式:
(2)简化计算公式(Ⅰ):
也可写成
17
此公式的记忆方法是:方差等于原数据平方的平均数减去平均数的平方。
(3)简化计算公式(Ⅱ):
当一组数据中的数据较大时,可以依照简化平均数的计算方法,将每个数据同时减去一个与它们的平均数接近的常数a,得到一组新数据,,…,,那么,
此公式的记忆方法是:方差等于新数据平方的平均数减去新数据平均数的平方。
(4)新数据法:
原数据的方差与新数据,,…,的方差相等,也就是说,根据方差的基本公式,求得的方差就等于原数据的方差。
3、标准差
方差的算数平方根叫做这组数据的标准差,用“s”表示,即
名师点睛☆典例分类
考点典例一、平均数
【例1】(2016广西桂林第3题)一组数据7,8,10,12,13的平均数是( )
A.7 B.9 C.10 D.12
【答案】C.
【解析】
考点:算术平均数.
【点睛】所给数据比较分散,选用定义公式:求解即可.
【举一反三】
(2016内蒙古呼伦贝尔市、兴安盟第8题)从一组数据中取出a个x1,b个x2,c个x3,组成一个样本,那么这个样本的平均数是( )
17
A. B. C. D.
【答案】B.
【解析】
考点:算术平均数.
考点典例二、众数、中位数
【例2】(2016山东济宁第8题)在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号1,2,3,4,5的五位同学最后成绩如下表所示:
参赛者编号
1
2
3
4
5
成绩/分
96
88
86
93
86
那么这五位同学演讲成绩的众数与中位数依次是( )
A.96,88, B.86,86 C.88,86 D.86,88
【答案】D.
【解析】
试题分析:这五位同学演讲成绩为96,88,86,93,86,按照从小到大的顺序排列为86,86,88,93,96,86出现两次,次数最多,是众数,中位数是中间的数为88,故答案选D.
考点:中位数;众数.
【点晴】将这组数据从小到大的顺序排列后,处于中间位置的数(或中间两个数的平均数)是中位数;众数是一组数据中出现次数最多的数.解决这类问题根据定义即可解决.
【举一反三】
1.(2016山东威海第9题)某电脑公司销售部为了定制下个月的销售计划,对20位销售员本月的销售量进行了统计,绘制成如图所示的统计图,则这20位销售人员本月销售量的平均数、中位数、众数分别是( )
A.19,20,14 B.19,20,20 C.18.4,20,20 D.18.4,25,20
17
【答案】C.
【解析】
考点:平均数;中位数;众数.
2.(2016湖南怀化第2题)某校进行书法比赛,有39名同学参加预赛,只能有19名同学参加决赛,他们预赛的成绩各不相同,其中一名同学想知道自己能否进入决赛,不仅要了解自己的预赛成绩,还要了解这39名同学预赛成绩的( )
A.平均数 B.中位数 C.方差 D.众数
【答案】B.
【解析】
试题分析:39个不同的成绩按从小到大排序后,中位数之前的共有19个数,所以只要知道自己的成绩和中位数就可以知道是否获奖了.故答案选B.
考点:中位数.
3.(2016湖南长沙第10题)已知一组数据75,80,80,85,90,则它的众数和中位数分别为( )
A.75,80 B.80,85 C.80,90 D.80,80
【答案】D.
【解析】
试题分析:把这组数据按照从小到大的顺序排列为:75,80,80,85,90,最中间的数是80,所以中位数是80;在这组数据中出现次数最多的是80,所以众数是80;故答案选D.
考点:中位数;众数.
考点典例三、方差
【例3】(2016河南第7题)下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:
甲
乙
丙
丁
平均数(cm)
185
180
185
180
17
方差
3.6
3.6
7.4
8.1
根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择【 】
(A) 甲 (B)乙 (C)丙 (D)丁
【答案】A.
【解析】
试题分析:在平均数一样的情况下,方差越小,数据的波动越小,由此可得应该选择甲,故答案选A.
考点:方差.
【点睛】方差反映了一组数据的稳定程度,方差越小,数据波动越小.
【举一反三】
1.(2016四川达州第13题)已知一组数据0,1,2,2,x,3的平均数是2,则这组数据的方差是 .
【答案】.
【解析】
考点:平均数;方差.
2.(2016湖北襄阳第6题)一组数据2,x,4,3,3的平均数是3,则这组数据的中位数、众数、方差分别是( )
A.3,3,0.4 B.2,3,2 C.3,2,0.4 D.3,3,2
【答案】A.
【解析】
试题分析:依题意得:,解得:x=3,把原数据由小到大排列为:2,3,3,3,4,所以中位数为3,众数为3,方差为:(1+0+1+0+0)=0.4,故答案选A.
考点:中位数;众数;方差.
课时作业☆能力提升
一.选择题
17
1.(2016浙江宁波第7题)某班10名学生校服尺寸与对应人数如下表所示:
尺寸(cm)
160
165
170
175
180
学生人数(人)
1
3
2
2
2
则这10名学生校服尺寸的众数和中位数分别为
A. 165cm,165cm B. 165cm,170cm C. 170cm,165cm D. 170cm,170cm
【答案】B.
【解析】
考点:中位数;众数.
2.(2016浙江宁波第7题)某班10名学生校服尺寸与对应人数如下表所示:
尺寸(cm)
160
165
170
175
180
学生人数(人)
1
3
2
2
2
则这10名学生校服尺寸的众数和中位数分别为
A. 165cm,165cm B. 165cm,170cm C. 170cm,165cm D. 170cm,170cm
【答案】B.
【解析】
试题分析:众数是一组数据中出现次数最多的数据,所以众数是165;把数据按从小到大顺序排列,可得中位数=(170+170)÷2=170,故答案选B.
考点:中位数;众数.
3.(2016山东淄博第5题)下列特征量不能反映一组数据集中趋势的是( )
A.众数 B.中位数 C.方差 D.平均数
【答案】C.
【解析】
试题分析:平均数、众数、中位数是描述一组数据集中趋势的特征量,极差、方差是衡量一组数据偏离其平均数的大小(即波动大小)的特征数.故答案选C.
考点:统计量的选择.
4.(2016湖北鄂州第5题)下列说法正确的是( )
A. 了解飞行员视力的达标率应使用抽样调查
17
B. 一组数据3,6,6,7,9的中位数是6
C. 从2000名学生中选200名学生进行抽样调查,样本容量为2000
D. 一组数据1,2,3,4,5的方差是10
【答案】B.
【解析】
考点:抽样调查、中位数、样本容量、方差.
5.(2016湖南怀化第2题)某校进行书法比赛,有39名同学参加预赛,只能有19名同学参加决赛,他们预赛的成绩各不相同,其中一名同学想知道自己能否进入决赛,不仅要了解自己的预赛成绩,还要了解这39名同学预赛成绩的( )
A.平均数 B.中位数 C.方差 D.众数
【答案】B.
【解析】
试题分析:39个不同的成绩按从小到大排序后,中位数之前的共有19个数,所以只要知道自己的成绩和中位数就可以知道是否获奖了.故答案选B.
考点:中位数.
6.(2016新疆生产建设兵团第6题)某小组同学在一周内参加家务劳动时间与人数情况如表所示:
劳动时间(小时)
2
3
4
人数
3
2
1
下列关于“劳动时间”这组数据叙述正确的是( )
A. 中位数是2 B.众数是2 C.平均数是3 D.方差是0
【答案】B.
【解析】
试题分析:根据众数的定义可知,这组数据的众数是2,故答案选B.
考点:众数;中位数;平均数;方差.
17
7..(2016湖南永州第6题)在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:
甲:8、7、9、8、8
乙:7、9、6、9、9
则下列说法中错误的是( )
A.甲、乙得分的平均数都是8
B.甲得分的众数是8,乙得分的众数是9
C.甲得分的中位数是9,乙得分的中位数是6
D.甲得分的方差比乙得分的方差小
【答案】C.
【解析】
考点:算术平均数;中位数;众数;方差.
8.(2016湖南娄底第7题)11名同学参加数学竞赛初赛,他们的等分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的( )
A. 平均数 B.中位数 C.众数 D.方差
【答案】B.
【解析】
试题分析:由于总共有11个人,且他们的分数互不相同,第6的成绩是中位数,要判断是否进入前6名,知道中位数即可.故答案选B.
考点:中位数.
9.(2016湖南株洲第3题)
17
甲、乙、丙、丁四名射击队员考核赛的平均成绩(环)及方差统计如表,现要根据这些数据,从中选出一人参加比赛,如果你是教练员,你的选择是( )
A.甲 B.乙 C.丙 D.丁
【答案】C.
【解析】
试题分析:∵ =9.7,,∴选择丙.故选C.
考点:方差.
10.2016年福建龙岩第6题)在2016年龙岩市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误的是( )
A.平均数为160 B.中位数为158 C.众数为158 D.方差为20.3
【答案】D.
【解析】
考点:1平均数;2中位数;3众数;4方差.
二.填空题
11.(2016海南省第4题)某班7名女生的体重(单位:kg)分别是35、37、38、40、42、42、74,这组数据的众数是( )
A.74 B.44 C.42 D.40
【答案】C
【解析】
试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C.
17
考点:众数.
12.(2016黑龙江大庆第13题)甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是 (填“甲”或“乙”).
【答案】甲.
【解析】
考点:方差.
13.(2016山东潍坊第15题)超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如表:
测试项目
创新能力
综合知识
语言表达
测试成绩(分数)
70
80
92
将创新能力、综合知识和语言表达三项测试成绩按5:3:2的比例计入总成绩,则该应聘者的总成绩是 分.
【答案】77.4.
【解析】
试题分析:根据该应聘者的总成绩=创新能力×所占的比值+综合知识×所占的比值+语言表达×所占的比值可得该应聘者的总成绩是:70×+80×+92×=77.4分.
考点:加权平均数.
14.(2016内蒙古巴彦淖尔第14题)两组数据3,a,2b,5与a,6,b的平均数都是8,若将这两组数据合并为一组数据,则这组新数据的众数为_____________,中位数为_____________.
【答案】12,6.
【解析】
17
考点:众数;算术平均数;中位数.
15.(2016福建南平第11题)甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是=0.2,=0.5,则设两人中成绩更稳定的是 (填“甲”或“乙”)
【答案】甲.
【解析】
试题分析:∵=0.2,=0.5,则<,可见较稳定的是甲.故答案为:甲.
考点:方差;算术平均数.
三.解答题
16. (2015绵阳)(11分)阳泉同学参加周末社会实践活动,到“富乐花乡”蔬菜大棚中收集到20株西红柿秧上小西红柿的个数:32 39 45 55 60 54 60 28 56 41
51 36 44 46 40 53 37 47 45 46
(1)前10株西红柿秧上小西红柿个数的平均数是 ,中位数是 ,众数是 ;
(2)若对这20个数按组距为8进行分组,请补全频数分布表及频数分布直方图
(3)通过频数分布直方图试分析此大棚中西红柿的长势.
【答案】(1)47;49.5;60;(2)5,7,4,作图见试题解析;(3)①此大棚的西红柿长势普遍较好,最少都有28个;②西红柿个数最集中的株数在第三组,共有7株;③西红柿的个数分布合理,中间多,两端少.(3条信息任答一条即可).
【解析】
17
(2)根据题意填表如下:
补图如下:
故答案为:5,7,4;
(3)此大棚的西红柿长势普遍较好,最少都有28个;西红柿个数最集中的株数在第三组,共7株;西红柿的个数分布合理,中间多,两端少.(3条信息任答一条即可).
考点:1.频数(率)分布直方图;2.频数(率)分布表;3.加权平均数;4.中位数;5.众数.
16.(2016广东广州第19题)某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛,现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录,甲、乙、丙三个小组各项得分如下表:
小组
研究报告
小组展示
答辩
甲
91
80
78
乙
81
74
85
丙
79
83
90
(1) 计算各小组的平均成绩,并从高分到低分确定小组的排名顺序:
(2) 如果按照研究报告占40%,小组展示占30%,答辩占30%,计算各小组的成绩,哪个小组的成绩最高?
【答案】(1)丙、甲、乙;(2)甲组的成绩最高.
17
【解析】
考点:平均数;加权平均数.
17.(2016黑龙江大庆第23题)为了了解某学校初四年纪学生每周平均课外阅读时间的情况,随机抽查了该学校初四年级m名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):
(1)根据以上信息回答下列问题:
①求m值.
②求扇形统计图中阅读时间为5小时的扇形圆心角的度数.
③补全条形统计图.
(2)直接写出这组数据的众数、中位数,求出这组数据的平均数.
【答案】(1)①60,②30度,③图形见解析;(2)众数:3小时,中位数:3小时,平均数:2.92小时.
【解析】
17
(2)众数为:3小时;中位数为:3小时;平均数为:(小时).
考点:1统计图;2频率与频数;3众数;4中位数;5平均数.
18.(2016湖北武汉第19题)(本题8分)某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图:
请你根据以上的信息,回答下列问题:
(1) 本次共调查了_____名学生,其中最喜爱戏曲的有_____人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是______;
17
(2) 根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.
【答案】(1)50,3,72°;(2)160人.
【解析】
(2)2000×8%=160(人).
考点:条形统计图;用样本估计总体;扇形统计图.
19.(2016辽宁大连第20题)为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,以下是根据调查数据绘制的统计图表的一部分
分组
家庭用水量x/吨
家庭数/户
A
0≤x≤4.0
4
B
4.0<x≤6.5
13
C
6.5<x≤9.0
D
9.0<x≤11.5
E
11.5<x≤14.0
6
F
x>4.0
3
根据以上信息,解答下列问题
(1)家庭用水量在4.0<x≤6.5范围内的家庭有 户,在6.5<x≤9.0范围内的家庭数占被调查家庭数的百分比是 %;
(2)本次调查的家庭数为 户,家庭用水量在9.0<x≤11.5范围内的家庭数占被调查家庭数的百分比是 %;
(3)家庭用水量的中位数落在 组;
17
(4)若该小区共有200户家庭,请估计该月用水量不超过9.0吨的家庭数.
【答案】(1)13,30;(2)50,18;(3)C;(4)128户.
【解析】
(2)调查的家庭数为:13÷26%=50,
6.5<x≤9.0 的家庭数为:50×30%=15,
D组9.0<x≤11.5 的家庭数为:50﹣4﹣13﹣6﹣3﹣15=9,
9.0<x≤11.5 的百分比是:9÷50×100%=18%;
(3)调查的家庭数为50户,则中位数为第25、26户的平均数,从表格观察都落在C组;
(4)调查家庭中不超过9.0吨的户数有:4+13+15=32,
=128(户),
答:该月用水量不超过9.0吨的家庭数为128户.
考点:扇形统计图;用样本估计总体;频数(率)分布表;中位数.
17