专题19 分式方程
聚焦考点☆温习理解
1、分式方程
分母里含有未知数的方程叫做分式方程。
2、分式方程的一般方法
解分式方程的思想是将“分式方程”转化为“整式方程”。它的一般解法是:
(1)去分母,方程两边都乘以最简公分母
(2)解所得的整式方程
(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。
3、分式方程的特殊解法
换元法:
换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。
名师点睛☆典例分类
考点典例一、判断方程为分式方程
【例1】下列各式中,是分式方程的是( )
A.x+y=5 B. C. D.
【答案】C.
【解析】
D、不是方程,是分式.
故选C.
考点:分式方程的定义.
10
【点睛】本题考查了分式方程的定义.判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).
【举一反三】
下列各式中为分式方程的是( )
A.x+ B. C. D.
【答案】B.
【解析】
考点:分式方程的定义.
考点典例二、分式方程的解及增根
【例2】(2015凉山州)分式方程的解是 .
【答案】.
【解析】
试题分析:方程的两边同乘,得:,解得.检验:把代入.∴原方程的解为:.故答案为:.
考点:解分式方程.
【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
【举一反三】
10
1. (2016广东广州第14题)方程的解是 .
【答案】x=-1.
【解析】
试题分析:方程两边同乘以2x(x-3)得,x-3=4x,解得x=-1,经检验x=-1是原方程的解.
考点:解分式方程.
2.若分式方程有增根,则这个增根是
【答案】x=1.
【解析】
考点:分式方程的增根.
考点典例三、解分式方程
【例3】(2016浙江台州第18题)解方程:.
【答案】x=15.
【解析】
试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
试题解析:去分母得:x+1=2x﹣14,解得:x=15,经检验x=15是分式方程的解.
考点:解分式方程.
【点睛】本题考查解分式方程的能力,注意:
(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.
(2)解分式方程一定注意要验根.
【举一反三】
1. (2016海南省第7题)解分式方程+1=0,正确的结果是( )
A.x=0 B.x=1 C.x=2 D.无解
【答案】A.
10
【解析】
试题分析:+1=0,1+x-1=0,x=0,经检验:x=0是原方程的根,故选A.
考点:解分式方程.
2. (2016内蒙古呼伦贝尔市、兴安盟第19题)解方程:.
【答案】x=0.
【解析】
考点:解分式方程.
考点典例四、分式方程的应用
【例3】(2016湖南岳阳第20题)我市某学校开展“远是君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足活动.已知学校与君山岛相距24千米,远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的2.5倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了3.6小时,求学生步行的平均速度是多少千米/小时.
【答案】3.
【解析】
试题分析:设学生步行的平均速度是每小时x千米,服务人员骑自行车的平均速度是每小时2.5x千米,根据学校与君山岛距离为24千米,服务人员所花时间比学生少用了3.6小时,可列方程求解.
试题解析:设学生步行的平均速度是每小时x千米.
服务人员骑自行车的平均速度是每小时2.5x千米,
根据题意:,
解得:x=3,
经检验,x=3是所列方程的解,且符合题意.
10
答:学生步行的平均速度是每小时3千米.
考点:分式方程的应用.
【点睛】此题考查分式方程的应用,找出题目蕴含的数量关系,列出方程解决问题.
【举一反三】
1. (2016山东淄博第16题)某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x个物件,根据题意列出的方程是 .
【答案】.
【解析】
考点:分式方程的应用.
2. (2016山东滨州第14题)甲、乙二人做某种机械零件,已知甲是技术能手每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做 个零件.
【答案】9.
【解析】
试题分析:设甲每小时做x个零件,乙每小时做(x-3)个零件,根据题意得,解得x=9,经检验,x=9是原方程的解.
考点:分式方程的应用.
课时作业☆能力提升
一、选择题
1. (2016湖北宜昌第8题)分式方程=1的解为( )
A.x=﹣1 B.x=C.x=1 D.x=2
【答案】A.
【解析】
10
试题分析:去分母得:2x﹣1=x﹣2,解得:x=﹣1,经检验x=﹣1是分式方程的解,所以分式方程的解为x=﹣1.故答案选A.
考点:分式方程的解法.
2. (2016湖北十堰第7题)用换元法解方程﹣=3时,设=y,则原方程可化为( )
A.y=﹣3=0 B.y﹣﹣3=0 C.y﹣+3=0 D.y﹣+3=0
【答案】B.
【解析】
试题分析:∵设=y,则=,原方程可转化为:y﹣=3,即y﹣﹣3=0.故答案选B.
考点:换元法解分式方程.
3. (2016山东潍坊第10题)若关于x的方程=3的解为正数,则m的取值范围是( )
A.m<B.m<且m≠C.m>﹣D.m>﹣且m≠﹣
【答案】B.
【解析】
考点:分式方程的解.
4. (2016新疆第9题)两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组的步行速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x千米/小时,根据题意可列方程是( )
A. B.
C. D.
10
【答案】D.
【解析】
考点:分式方程的应用.
5.若关于的分式方程有增根,则的值是( ).
A. B. C. D.或
【答案】A.
【解析】
考点:1.解分式方程;2.增根的意义.
6. (2016青海第18题)穿越青海境内的兰新高铁极大地改善了沿线人民的经济文化生活,该铁路沿线甲,乙两城市相距480km,乘坐高铁列车比乘坐普通快车能提前4h到达,已知高铁列车的平均行驶速度比普通列车快160km/h,设普通列车的平均行驶速度为xkm/h,依题意,下面所列方程正确的是( )
A.B.C.D.
【答案】B.
【解析】
试题分析:设普通列车的平均行驶速度为xkm/h,则高铁列车的平均速度为(x+160)km/h,根据题意,可得:,故选B.
考点:由实际问题抽象出分式方程.
7. (2016辽宁葫芦岛第8题)A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运40千克,A型机器人搬运1200千克所用时间与B型机器人搬运800千克所用时间相等.设B型机器人每小时搬运化工原料x千克,根据题意可列方程为( )
10
A. B. C. D.
【答案】A.
【解析】
考点:由实际问题抽象出分式方程.
二、填空题
8. (2016江苏苏州第12题)当x= 时,分式的值为0.
【答案】2.
【解析】
试题分析:∵的值为0,∴x-2=0且2x+5≠0,解得x=2.
考点:分式.
9. (2016贵州铜仁第13题)方程的解为 .
【答案】x=﹣3.
【解析】
试题分析:去分母,得:5x﹣3(x﹣2)=0,整理,得:2x+6=0,解得:x=﹣3,经检验:x=﹣3是原分式方程的解,故答案为:x=﹣3.
考点:解分式方程.
10. (2016江苏盐城第15题)方程的正根为 .
【答案】x=2.
【解析】
试题分析:去分母得,整理得,解得,,经检验,都是分式方程的解,所以原方程的正根为x=2.故答案为:x=2.
考点:分式方程的解.
三、解答题
10
11.(2016浙江台州第18题)解方程:.
【答案】x=15.
【解析】
试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
试题解析:去分母得:x+1=2x﹣14,解得:x=15,经检验x=15是分式方程的解.
考点:解分式方程.
12. (2016福建南平第18题)解分式方程:.
【答案】x=3.
【解析】
考点:解分式方程.
13. (2016湖南岳阳第20题)我市某学校开展“远是君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足活动.已知学校与君山岛相距24千米,远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的2.5倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了3.6小时,求学生步行的平均速度是多少千米/小时.
【答案】3.
【解析】
试题分析:设学生步行的平均速度是每小时x千米,服务人员骑自行车的平均速度是每小时2.5x千米,根据学校与君山岛距离为24千米,服务人员所花时间比学生少用了3.6小时,可列方程求解.
试题解析:设学生步行的平均速度是每小时x千米.
服务人员骑自行车的平均速度是每小时2.5x千米,
根据题意:,
解得:x=3,
经检验,x=3是所列方程的解,且符合题意.
答:学生步行的平均速度是每小时3千米.
10
考点:分式方程的应用.
14. (2016山东威海第20题)某校进行期末体育达标测试,甲、乙两班的学生数相同,甲班有48人达标,乙班有45人达标,甲班的达标率比乙班高6%,求乙班的达标率.
【答案】乙班的达标率为90%.
【解析】
考点:分式方程的应用.
15.(2016新疆生产建设兵团第17题)某学校为绿化环境,计划种植600棵树,实际劳动中每小时植树的数量比原计划多20%,结果提前2小时完成任务,求原计划每小时种植多少棵树?
【答案】原计划每小时种植50棵树.
【解析】
试题分析:设原计划每小时种植x棵树,则实际劳动中每小时植树的数量是120%x棵,根据“结果提前2小时完成任务”列出方程并求解.
试题解析:设原计划每小时种植x棵树,
考点:分式方程的应用.
10