专题39 尺规作图
聚焦考点☆温习理解
1.尺规作图的作图工具限定只用圆规和没有刻度的直尺
2.基本作图
(1)作一条线段等于已知线段,以及线段的和﹑差;
(2)作一个角等于已知角,以及角的和﹑差;
(3)作角的平分线;
(4)作线段的垂直平分线;
(5)过一点作已知直线的垂线.
3.利用基本作图作三角形
(1)已知三边作三角形;
(2)已知两边及其夹角作三角形;
(3)已知两角及其夹边作三角形;
(4)已知底边及底边上的高作等腰三角形;
(5)已知一直角边和斜边作直角三角形.
4.与圆有关的尺规作图
(1)过不在同一直线上的三点作圆(即三角形的外接圆);
(2)作三角形的内切圆;
(3)作圆的内接正方形和正六边形.
5.有关中心对称或轴对称的作图以及设计图案是中考的常见类型
6.作图的一般步骤
尺规作图的基本步骤:
(1)已知:写出已知的线段和角,画出图形;
(2)求作:求作什么图形,它符合什么条件,一一具体化;
(3)作法:应用“五种基本作图”,叙述时不需重述基本作图的过程,但图中必须保留基本作图的痕迹;
(4)证明:为了验证所作图形的正确性,把图作出后,必须再根据已知的定义、公理、定理等,结合作法来证明所作出的图形完全符合题设条件;
(5)讨论:研究是不是在任何已知的条件下都能作出图形;在哪些情况下,
17
问题有一个解、多个解或者没有解;
(6)结论:对所作图形下结论.
名师点睛☆典例分类
考点典例一、画三角形
【例1】(鞍山)如图,已知线段a及∠O,只用直尺和圆规,求作△ABC,使BC=a,∠B=∠O,∠C=2∠B.(在指定作图区域作图,保留作图痕迹,不写作法)
【答案】作图见解析
考点:作图—复杂作图.
【点睛】(1)作三角形包括:①已知三角形的两边及其夹角,求作三角形;②已知三角形的两角及其夹边,求作三角形;③已知三角形的三边,求作三角形;
(2)求作三角形的关键是确定三角形的顶点;而求作直角三角形时,一般先作出直角,然后根据条件作出所求的图形.
【举一反三】
已知:线段a、c和∠β(如图),利用直尺和圆规作△ABC,使BC=a,AB=c,∠ABC=∠β.(不写作法,保留作图痕迹).
17
【答案】作图见解析.
考点:作图—基本作图.
考点典例二、应用角平分线、线段的垂直平分线性质画图
【例2】(2014·怀化)两个城镇A,B与两条公路ME,MF位置如图所示,其中ME是东西方向的公路.现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A,B的距离必须相等,到两条公路ME,MF的距离也必须相等,且在∠FME的内部.
【答案】作图见解析.
【解析】
17
考点:作图—应用与设计作图.
【点睛】本题借助实际场景,考查了几何基本作图的能力,考查了线段垂直平分线和角平分线的性质及应用.
【举一反三】
(2016河北第10题)如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.
步骤1:以C为圆心,CA为半径画弧;
步骤2:以B为圆心,BA为半径画弧,将弧于点D;
步骤3:连接AD,交BC延长线于点H.
下列叙述正确的是( )
第10题图
A.BH垂直分分线段AD B.AC平分∠BAD
C.S△ABC=BC·AH D.AB=AD
【答案】A.
【解析】
试题分析:由作法可得BH为线段AD的垂直平分线,故答案选A.
17
考点:线段垂直平分线的性质.
考点典例三、通过画图确定圆心
【例3】如图,在△ABC中,先作∠BAC的角平分线AD交BC于点D,再以AC边上的一点O为圆心,过A,D两点作⊙O(用尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)
【答案】
考点:作图—复杂作图.
【点睛】本题考查了复杂的尺规作图,角平分线,线段中垂线及圆,解题的关键是找准圆周心作出圆.
【举一反三】
(2016湖北襄阳第7题)如图,在□ABCD中,AB>AD,按以下步骤作图:以点A为圆心,小于AD的长为半径画弧,分别交AB,AD于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论中不能由条件推理得出的是( )
A.AG平分∠DAB B.AD=DH C.DH=BC D.CH=DH
17
【答案】D.
【解析】
试题分析:由角平分线的作法,依题意可知AG平分∠DAB,A正确;∠DAH=∠BAH,又AB∥DC,所以∠BAH=∠ADH,所以,∠DAH=∠ADH,所以,AD=DH,又AD=BC,所以,DH=BC,B、C正确,故答案选D.
考点:平行四边形的性质;平行线的性质.
课时作业☆能力提升
1. (2016浙江台州第7题)如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是( )
A. B. C. D.
【答案】B.
17
考点:勾股定理;实数与数轴.
2.(2016辽宁营口第8题)如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,以相同的长(大于AC)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.下列结论错误的是( )
A.AD=CD B.∠A=∠DCE C.∠ADE=∠DCB D.∠A=2∠DCB
【答案】D.
考点:作图—基本作图;线段垂直平分线的性质.
3.(2016黑龙江绥化第5题)把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是( )
A. B. C. D.
【答案】C.
17
考点:剪纸问题;操作型.
4.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是( )
A.SAS B.SSS C.ASA D.AAS
【答案】B.
【解析】
试题分析:我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得.
试题解析:作图的步骤:
①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;
②任意作一点O′,作射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′;
③以C′为圆心,CD长为半径画弧,交前弧于点D′;
④过点D′作射线O′B′.
所以∠A′O′B′就是与∠AOB相等的角;
作图完毕.
在△OCD与△O′C′D′,
17
∴△OCD≌△O′C′D′(SSS),
∴∠A′O′B′=∠AOB,
显然运用的判定方法是SSS.
故选:B.
答案:作图—基本作图;全等三角形的判定与性质.
5(2016湖北宜昌第12题)任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是( )
A.△EGH为等腰三角形 B.△EGF为等边三角形
C.四边形EGFH为菱形 D.△EHF为等腰三角形
【答案】B.
考点:线段垂直平分线的性质.
6.如图,BC与CD重合,∠ABC=∠CDE=90°,△ABC≌△CDE,并且△CDE可由△ABC逆时针旋转而得到.请你利用尺规作出旋转中心O(保留作图痕迹,不写作法,注意最后用墨水笔加黑),并直接写出旋转角度是 .
17
【答案】90°.
考点:作图-旋转变换.
7.如图,在△ABC中,按以下步骤作图:
①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;
②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为
【答案】105°.
【解析】
试题分析:首先根据题目中的作图方法确定MN是线段BC的垂直平分线,然后利用垂直平分线的性质解题即可.
试题解析:由题中作图方法知道MN为线段BC的垂直平分线,
∴CD=BD,
∵∠B=25°,
∴∠DCB=∠B=25°,
∴∠ADC=50°,
∵CD=AC,
∴∠A=∠ADC=50°,
∴∠ACD=80°,
17
∴∠ACB=∠ACD+∠BCD=80°+25°=105°
考点:作图—基本作图;线段垂直平分线的性质.
8.如图,在Rt△ABC中,∠B=90°,分别以A、C为圆心,大于AC长为半径画弧,两弧相交于点M、N,连结MN,与AC、BC分别交于点D、E,连结AE,则:
(1)∠ADE= ;
(2)AE EC;(填“=”“>”或“<”)
(3)当AB=3,AC=5时,△ABE的周长=
【答案】(1)90°;(2)=;(3)7.
考点:线段垂直平分线的性质;勾股定理的应用.
9.(2016四川达州第20题)如图,在▱ABCD中,已知AD>AB.
17
(1)实践与操作:作∠BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)
(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.
【答案】(1)详见解析;(2)四边形ABEF是菱形,理由详见解析.
∵AF=AB,
∴四边形ABEF是菱形.
17
考点:角平分线的画法;平行四边形的性质;菱形的判定.
10.(2016广东广州第21题)如图,利用尺规,在的边上方做,在射线上截取,连接,并证明:
(尺规作图要求保留作图痕迹,不写作法)
【答案】详见解析.
考点:尺规作图;平行四边形的判定及性质.
11.(2016湖南怀化第19题)如图,在Rt△ABC中,∠BAC=90°
(1)先作∠ACB的平分线交AB边于点P,再以点P为圆心,PA长为半径作⊙P;(要求:尺规作图,保留作图痕迹,不写作法)
17
(2)请你判断(1)中BC与⊙P的位置关系,并证明你的结论.
【答案】(1)详见解析;(2)BC与⊙P相切,理由见解析.
考点:直线与圆的位置关系;尺规作图.
12.(2016广西河池第21题)如图,AE∥BF,AC平分∠BAE,交BF于C.
(1)尺规作图:过点B作AC的垂线,交AC于O,交AE于D,(保留作图痕迹,不写作法);
(2)在(1)的图形中,找出两条相等的线段,并予以证明.
17
【答案】(1)作图见解解析;(2)AB=AD=BC.
考点:作图—基本作图;作图题.
13.(2016贵州贵阳第23题)(10分)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,AB=8.
(1)利用尺规,作∠CAB的平分线,交⊙O于点D;(保留作图痕迹,不写作法)
(2)在(1)的条件下,连接CD,OD,若AC=CD,求∠B的度数;
(3)在(2)的条件下,OD交BC于点E.求出由线段ED,BE,所围成区域的面积.(其中表示劣弧,结果保留π和根号)
【答案】(1)作图见解析;(2)30°;(3).
【解析】
试题分析:(1)作AP平分∠CAB交⊙O于D;
17
考点:作图—基本作图;圆周角定理;扇形面积的计算;作图题.
14.(2016江苏盐城第23题)如图,已知△ABC中,∠ABC=90°.
(1)尺规作图:按下列要求完成作图(保留作图痕迹,请标明字母)
①作线段AC的垂直平分线l,交AC于点O;
②连接BO并延长,在BO的延长线上截取OD,使得OD=OB;
③连接DA、DC.
(2)判断四边形ABCD的形状,并说明理由.
【答案】(1)作图见解析;(2)四边形ABCD是矩形.
【解析】
17
考点:作图—基本作图;矩形的判定.
17