空间几何体的直观图教案(新人教A版必修二)
加入VIP免费下载

本文件来自资料包: 《空间几何体的直观图教案(新人教A版必修二)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
长丰县实验高中2016 ~2017学年第一学期高二年级数学学科 集 体 备 课 教 案 项目 内容 课题 ‎1.2.3‎‎ 空间几何体的直观图 ‎(共 1 课时)‎ 修改与创新 教学 目标 通过用斜二测画法画水平放置的平面图形和空间几何体的直观图,提高学生识图和画图的能力,培养探究精神和意识,以及转化与化归的数学思想方法.‎ 教学重、‎ 难点 教学重点:用斜二测画法画空间几何体的直观图.‎ 教学难点:直观图和三视图的互化.‎ 教学 准备 多媒体课件 教学过程 一、导入新课:‎ 正投影主要用于绘制三视图,在工程制图中被广泛采用,但三视图的直观性较差,因此绘制物体的直观图一般采用斜投影或中心投影.中心投影虽然可以显示空间图形的直观形象,但作图方法比较复杂,又不易度量,因此在立体几何中通常采用斜投影的方法来画空间图形的直观图.把空间图形画在纸上,是用一个平面图形来表示空间图形,这样表达的不是空间图形的真实形状,而是它的直观图.‎ 二、讲授新课:‎ 提出问题 ‎ ①如何用斜二测画法画水平放置的正六边形的直观图?‎ ‎ ②上述画直观图的方法称为斜二测画法,请总结其步骤.‎ ‎ ③探求空间几何体的直观图的画法.用斜二测画法画长、宽、高分别是‎4 cm、‎3 cm、‎2 cm的长方体ABCD—A′B′C′D′的直观图.‎ ‎ ④用斜二测画法画水平放置的平面图形和几何体的直观图有什么不同?并总结画几何体的直观图的步骤.‎ 活动:①和③教师首先示范画法,并让学生思考斜二测画法的关键步骤,‎ 让学生发表自己的见解,教师及时给予点评.‎ ‎②根据上述画法来归纳.‎ ‎③让学生比较两种画法的步骤.‎ 讨论结果:①画法:1°如图1(1),在正六边形ABCDEF中,取AD所在直线为x轴,对称轴MN所在直线为y轴,两轴相交于点O.在图1(2)中,画相应的x′轴与y′轴,两轴相交于点O′,使∠x′O′y′=45°.‎ ‎ 2°在图1(2)中,以O′为中点,在x′轴上取A′D′=AD,在y′轴上取M′N′=MN.以点N′为中点画B′C′平行于x′轴,并且等于BC;再以M′为中点画E′F′平行于x′轴,并且等于EF.‎ ‎ 3°连接A′B′,C′D′,D′E′,F′A′,并擦去辅助线x′轴和y′轴,便获得正六边形ABCDEF水平放置的直观图A′B′C′D′E′F′〔图1(3)〕.‎ 图1‎ ‎②步骤是:1°在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x′轴与y′轴,两轴交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.‎ ‎2°已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴或y′轴的线段.‎ ‎3°已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度为原来的一半.‎ ‎③画法:1°画轴.如图2,画x轴、y轴、z轴,三轴相交于点O,使∠xOy=45°,∠xOz=90°.‎ 图2‎ ‎2°画底面.以点O为中点,在x轴上取线段MN,使MN=4 cm;在y轴上取线段PQ,使PQ=cm.分别过点M和N作y轴的平行线,过点P和Q作x轴的平行线,设它们的交点分别为A、B、C、D,四边形ABCD就是长方体的底面ABCD.‎ ‎3°画侧棱.过A、B、C、D各点分别作z轴的平行线,并在这些平行线上分别截取‎2 cm长的线段AA′、BB′、CC′、DD′.‎ ‎4°成图.顺次连接A′、B′、C′、D′,并加以整理(去掉辅助线,将被遮挡的部分改为虚线),就得到长方体的直观图.‎ 点评:画几何体的直观图时,如果不作严格要求,图形尺寸可以适当选取,用斜二测画法画图的角度也可以自定,但是要求图形具有一定的立体感.‎ ‎ ④画几何体的直观图时还要建立三条轴,实际是建立了空间直角坐标系,而画水平放置平面图形的直观图实际上建立的是平面直角坐标系.画几何体的直观图的步骤是:‎ ‎ 1°在已知图形所在的空间中取水平平面,作互相垂直的轴Ox、Oy,再作Oz轴,使∠xOy=90°,∠yOz=90°.‎ ‎ 2°画出与Ox、Oy、Oz对应的轴O′x′、O′y′、O′z′,使∠x′O′y′=45°,∠y′O′z′=90°,x′O′y′所确定的平面表示水平平面.‎ ‎ 3°已知图形中,平行于x轴、y轴和z轴的线段,在直观图中分别画成平行于x′轴、y′轴和z′轴的线段,并使它们在所画坐标轴中的位置关系与已知图形中相应线段和原坐标轴的位置关系相同.‎ ‎ 4°已知图形中平行于x轴和z轴的线段,在直观图中保持长度不变,平行于y轴的线段,长度为原来的一半.‎ ‎ 5°擦除作为辅助线的坐标轴,就得到了空间图形的直观图.‎ ‎ 斜二测画法的作图技巧:‎ ‎ 1°在已知图中建立直角坐标系,理论上在任何位置建立坐标系都行,但实际作图时,一般建立特殊的直角坐标系,尽量运用原有直线为坐标轴或图形的对称直线为坐标轴或图形的对称点为原点或利用原有垂直正交的直线为坐标轴等.‎ ‎ 2°在原图中与x轴或y轴平行的线段在直观图中依然与x′轴或y′轴平行,原图中不与坐标轴平行的线段可以先画出线段的端点再连线,画端点时作坐标轴的平行线为辅助线.原图中的曲线段可以通过取一些关键点,利用上述方法作出直观图中的相应点后,用平滑的曲线连接而画出.‎ ‎ 3°在画一个水平放置的平面时,由于平面是无限延展的,通常我们只画出它的一部分表示平面,一般地,用平行四边形表示空间一个水平平面的直观图.‎ 应用示例 例1 用斜二测画法画水平放置的圆的直观图.‎ 活动:学生回顾讨论斜二测画法的步骤,自己画出来后再互相交流.教师适当点评.‎ 解:(1)如图3(1),在⊙O上取互相垂直的直径AB、CD,分别以它们所在的直线为x轴与y轴,将线段AB n等分.过各分点分别作y轴的平行线,交⊙O于E,F,G,H,…,画对应的x′轴和y′轴,使∠x′O′y′=45°.‎ 图3‎ ‎(2)如图3(2),以O′为中点,在x′轴上取A′B′=AB,在y′轴上取C′D′=CD,将A′B′ n等分,分别以这些分点为中点,画与y′轴平行的线段E′F′,G′H′,…,使E′F′=,G′H′=,….‎ ‎(3)用光滑曲线顺次连接A′,D′,F′,H′,…,B′,G′,E′,C′,A′并擦去辅助线,得到圆的水平放置的直观图〔图3(3)〕.‎ 点评:本题主要考查用斜二测画法画水平放置的平面图形的直观图.‎ 变式训练 ‎1.画水平放置的等边三角形的直观图.‎ 答案:略.‎ ‎2.关于“斜二测画法”,下列说法不正确的是( )‎ A.原图形中平行于x轴的线段,其对应线段平行于x′轴,长度不变 B.原图形中平行于y轴的线段,其对应线段平行于y′轴,长度变为原来的 C.在画与直角坐标系xOy对应的x′O′y′时,∠x′O′y′必须是45°‎ D.在画直观图时,由于选轴的不同,所得的直观图可能不同 分析:在画与直角坐标系xOy对应的x′O′y′时,∠x′O′y′也可以是135°,所以C不正确.‎ 答案:C 例2 如图4,已知几何体的三视图,用斜二测画法画出它的直观图.‎ 图4‎ 活动:让学生由三视图还原为实物图,并判断该几何体的结构特征.教师分析:‎ ‎ 由几何体的三视图知道,这个几何体是一个简单组合体,它的下部是一个圆柱,上部是一个圆锥,并且圆锥的底面与圆柱的上底面重合.我们可以先画出下部的圆柱,再画出上部的圆锥.‎ 解:画法:‎ ‎(1)画轴.如图5(1),画x轴、y轴、z轴,使∠xOy=45°,∠xOz=90°.‎ ‎ ‎ ‎(1) (2)‎ 图5‎ ‎(2)画圆柱的两底面,仿照例2画法,画出底面⊙O.在z轴上截取O′,使OO′等于三视图中相应高度,过O′作Ox的平行线O′x′,Oy的平行线O′y′,利用O′x′与O′y′画出底面⊙O′(与画⊙O一样).‎ ‎(3)画圆锥的顶点.在Oz上截取点P,使PO′等于三视图中相应的高度.‎ ‎(4)成图.连接PA′,PB′,A′A,B′B,整理得到三视图表示的几何体的直观图〔图5(2)〕.‎ 点评: 空间几何体的三视图与直观图有着密切的联系,我们能够由空间几何体的三视图得到它的直观图.同时,也能够由空间几何体的直观图得到它的三视图.‎ 变式训练 ‎ 图6所示是一个奖杯的三视图,你能想象出它的几何结构,并画出它的直观图吗?‎ 图6‎ 答案:奖杯的几何结构是最上面是一个球,中间是一个四棱柱,最下面是一个棱台拼接成的简单组合体.其直观图略.‎ 课堂小结:‎ 本节课学习了:‎ ‎1.直观图的概念.‎ ‎2.直观图的画法.‎ ‎3.直观图和三视图的关系.‎ 布置作业:‎ 习题‎1.2 A组 第5、6题.‎ 板书设计 教学反思

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料