教学设计
3.2.2 函数模型的应用实例
第1课时
整体设计
教学目标
知识与技能:(1)通过实例“汽车的行驶规律”,理解一次函数、分段函数的应用,提高学生的读图能力.
(2)通过“马尔萨斯的人口增长模型”,使学生学会指数型函数的应用,了解函数模型在社会生活中的广泛应用.
过程与方法:在实际问题的解决中,发展学生科学地提出问题、分析问题的能力,体会数学与物理、人类社会的关系.
情感、态度与价值观:通过学习,体会数学在社会生活中的应用价值,培养学生的兴趣和探究素养.
重点、难点
教学重点:分段函数和指数型函数的应用.
教学难点:函数模型的体验与建立.
教学过程
导入新课
思路1.(情境导入)
在课本第三章的章头图中,有一大群喝水、嬉戏的兔子,但是这群兔子曾使澳大利亚伤透了脑筋.1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们几乎占领了整个澳大利亚,数量达到75亿只.可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛、羊是澳大利亚的主要牲口.这使澳大利亚人头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气.
与之相应,图中话道出了其中的意蕴:对于一个种群的数量,如果在理想状态(如没有天敌、食物充足等)下,那么它将呈指数增长;但在有限制的环境中,种群数量一般符合对数增长模型.上一节我们学习了不同的函数模型的增长差异,这一节我们将进一步讨论不同函数模型的应用.
思路2.(直接导入)
上一节我们学习了不同的函数模型的增长差异,这一节我们将进一步讨论不同函数模型的应用.
推进新课
提出问题
(1)我市有甲、乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.小张准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,也不超过40小时.
设在甲家租一张球台开展活动x小时的收费为f(x)元(15≤x≤40),在乙家租一张球台开展活动x小时的收费为g(x)元(15≤x≤40),试求f(x)和g(x).
(2)A,B两城相距100 km,在两地之间距A城x km处的D地建一核电站,给A,B两城供电,为保证城市安全.核电站距城市的距离不得少于10 km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数λ=0.25.若A城供电量为20亿度/月,B城为10亿度/月.把月供电总费用y表示成x的函数,并求定义域.
(3)分析以上实例属于那种函数模型.
讨论结果:(1)f(x)=5x(15≤x≤40);
g(x)=
(2)y=5x2+(100—x)2(10≤x≤90).
(3)分别属于一次函数模型、分段函数模型、二次函数模型.
例1 一辆汽车在某段路程中的行驶速率与时间的关系如图1所示.
图1
(1)求图1中阴影部分的面积,并说明所求面积的实际含义;
(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2 004 km,试建立行驶这段路程时汽车里程表读数s(km)与时间t(h)的函数解析式,并作出相应的图象.
活动:学生先思考讨论,再回答.教师可根据实际情况,提示引导.
图中横轴表示时间,纵轴表示速度,面积为路程;由于每个时间段速度不同,汽车里程表读数s(km)与时间t(h)的函数为分段函数.
解:(1)阴影部分的面积为50×1+80×1+90×1+75×1+65×1=360.
阴影部分的面积表示汽车在这5小时内行驶的路程为360 km.
(2)根据图1,有s=
这个函数的图象如图2所示.
图2
变式训练
电信局为了满足客户不同需要,设有A,B两种优惠方案,这两种方案应付话费(元)与通话时间(分钟)之间关系如图3所示(其中MN∥CD).
(1)分别求出方案A,B应付话费(元)与通话时间x(分钟)的函数表达式f(x)和g(x);
(2)假如你是一位电信局推销人员,你是如何帮助客户选择A,B两种优惠方案的?并说明理由.
图3
解:(1)两种优惠方案所对应的函数解析式:
g(x)=
(2)当f(x)=g(x)时,x-10=50,∴x=200.
∴当客户通话时间为200分钟时,两种方案均可;
当客户通话时间为0≤x<200分钟,g(x)>f(x),故选择方案A;
当客户通话时间为x>200分钟时,g(x)<f(x),故选方案B.
点评:在解决实际问题过程中,函数图象能够发挥很好的作用,因此,我们应当注意提高读图的能力.另外,本题用到了分段函数,分段函数是刻画实际问题的重要模型.
例2 人口问题是当今世界各国普遍关注的问题.认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798年,英国经济学家马尔萨斯(T.R.Malthus,1766—1834)就提出了自然状态下的人口增长模型:y=y0ert,
其中t表示经过的时间,y0表示t=0时的人口数,r表示人口的年平均增长率.
下表是1950~1959年我国的人口数据资料:
年份
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
人数/万人
55 196
56 300
57 482
58 796
60 266
61 456
62 828
64 563
65 994
67 207
(1)如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到0.000 1),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;
(2)如果按表的增长趋势,大约在哪一年我国的人口达到13亿?
解:(1)设1951~1959年的人口增长率分别为r1,r2,r3,…,r9.
由55 196(1+r1)=56 300,可得1951年的人口增长率为r1≈0.020 0.
同理可得,r2≈0.021 0,r3≈0.022 9,r4≈0.025 0,r5≈0.019 7,r6≈0.022 3,r7≈0.027 6,r8≈0.022 2,r9≈0.018 4.
于是,1951~1959年期间,我国人口的年平均增长率为
r=(r1+r2+…+r9)÷9≈0.022 1.
令y0=55 196,则我国在1950~1959年期间的人口增长模型为y=55 196e0.022 1t,t∈N.
根据表中的数据作出散点图,并作出函数y=55 196e0.022 1t(t∈N)的图象(图4).
图4
由图可以看出,所得模型与1950~1959年的实际人口数据基本吻合.
(2)将y=130 000代入y=55 196e0.022 1t,由计算器可得t≈38.76.
所以,如果按表的增长趋势,那么大约在1950年后的第39年(即1989年)我国的人口就已达到13亿.由此可以看到,如果不实行计划生育,而是让人口自然增长,今天我国将面临难以承受的人口压力.
变式训练
一种放射性元素,最初的质量为500 g,按每年10%衰减.
(1)求t年后,这种放射性元素质量ω的表达式;
(2)由求出的函数表达式,求这种放射性元素的半衰期(剩留量为原来的一半所需的时间叫做半衰期).(精确到0.1.已知lg 2=0.301 0,lg 3=0.477 1)
解:(1)最初的质量为500 g.
经过1年后,ω=500(1-10%)=500×0.91;
经过2年后,ω=500×0.9(1-10%)=500×0.92;
由此推知,t年后,ω=500×0.9t.
(2)解方程500×0.9t=250,则0.9t=0.5,
所以t==≈6.6(年),
即这种放射性元素的半衰期约为6.6年.
某电器公司生产A型电脑.1993年这种电脑平均每台的生产成本为5 000元,并以纯利润20%确定出厂价.从1994年开始,公司通过更新设备和加强管理,使生产成本逐年降低.到1997年,尽管A型电脑出厂价仅是1993年出厂价的80%,但却实现了50%纯利润的高效益.
(1)求1997年每台A型电脑的生产成本;
(2)以1993年的生产成本为基数,求1993年至1997
年生产成本平均每年降低的百分数.(精确到0.01,以下数据可供参考:=2.236,=2.449)
活动:学生先思考讨论,再回答.教师根据实际情况,提示引导.
出厂价=单位商品的成本+单位商品的利润.
解:(1)设1997年每台电脑的生产成本为x元,依题意,得
x(1+50%)=5 000×(1+20%)×80%,解得x=3 200(元).
(2)设1993年至1997年间每年平均生产成本降低的百分率为y,则依题意,得5 000(1-y)4=3 200,解得y1=1-,y2=1+(舍去).所以y=1-≈0.11=11%,
即1997年每台电脑的生产成本为3 200元,1993年至1997年生产成本平均每年降低约为11%.
点评:函数与方程的应用是本章的重点,请同学们体会它们的关联性.
某家电企业根据市场调查分析,决定调整产品的生产方案:准备每周(按120个工时计算)生产空调、彩电、冰箱共360台,且冰箱至少生产60台.已知生产这些家电产品每台所需工时和每台产值如下表:
家电名称
空调
彩电
冰箱
每台所需工时
每台产值(千元)
4
3
2
问每周应生产空调、彩电、冰箱各多少台,才能使周产值最高?最高产值是多少?(以千元为单位)
解:设每周生产空调、彩电、冰箱分别为x台、y台、z台,每周产值为f千元,
则f=4x+3y+2z,其中
由①②可得y=360-3x,z=2x,代入③得则有30≤x≤120.
故f=4x+3(360-3x)+2·2x=1 080-x,当x=30时,fmax=1 080-30=1 050.
此时y=360-3x=270,z=2x=60.
答:每周应生产空调30台,彩电270台,冰箱60台,才能使每周产值最高,最高产值为1 050千元.
点评:函数、方程、不等式有着密切的关系,它们相互转化组成一个有机的整体.请同学们借助上面的实例细心体会.
本节重点学习了函数模型的实例应用,包括一次函数模型、二次函数模型、分段函数模型等;另外还应关注函数、方程、不等式之间的相互关系.
活动:学生先思考讨论,再回答.教师提示、点拨,及时评价.
引导方法:从基本知识和基本技能两方面来总结.
课本习题3.2A组 5,6.
设计感想
本节设计从有趣的故事开始,让学生从故事中体会函数模型的选择,然后通过几个实例介绍常用函数模型.接着通过最新题型,训练学生由图表转化为函数解析式的能力,从而解决实际问题.本节的每个例题的素材贴近现代生活,都是学生非常感兴趣的问题,很容易引起学生的共鸣.
第2课时
作者:王仁海,瓯海中学教师,本教学设计获浙江省教学设计大赛省一等奖.
整体设计
教学分析
本节课选自《普通高中课程标准实验教科书数学1必修(A版)》第三章的“3.2.2函数模型的应用实例”,即建立拟合函数模型解决实际问题.
函数模型的应用是中学数学的重要内容之一,它主要包含三个方面:利用给定的函数模型解决实际问题,建立确定性函数模型解决问题,建立拟合函数模型解决实际问题.而建立拟合函数模型解决实际问题是其重点,也是难点.函数模型的应用教学,既有不可替代的位置,又有重要的现实意义.
本节通过实例来说明函数模型的应用,是因为函数模型本身就来源于现实,能给学生提供更多从实际问题中发现或建立数学模型的机会,并体会数学在实际问题中的应用价值.因此在中学教学中有重要的地位.
学情分析
学生在学习本节内容之前,已经学习了函数的图象和性质,理解了函数的图象与性质之间的关系,尤其是学习了3.2.1几类不同的函数增长模型和3.2.2函数模型的应用实例.学会了如何利用给定的函数模型解决实际问题,建立确定性函数模型解决问题,已经具备了一定的函数模型应用能力.这为理解建立拟合函数模型解决实际问题提供了基础,也为深入理解如何建立合适的拟合函数模型提供了依据.但学生对于动态数据认识薄弱,对于综合应用函数图象与性质尚不够熟练,这些都给学生选择合适的模型造成一定的困难.因此,在教学时应该为学生创设熟悉的问题情境,充分利用学生熟悉的函数图象来选择合适的模型.引导学生观察、计算、思考和理解问题的本质.
教学目标
知识与技能:了解函数拟合的基本思想,学会建立拟合函数模型解决实际问题.
过程与方法:借助信息技术,利用数据画出函数图象,从拟合简单的一次函数模型入手,掌握多角度观察函数图象的技能,探究出各种合适的拟合函数模型.在建构知识的过程中体会数形结合的思想与从特殊到一般的归纳思想.
情感、态度与价值观:体验探究的乐趣,体验函数是描述变化规律的基本数学模型,培养学生分析解决问题的能力.
重点与难点
重点:将实际问题化为函数模型,建立合适的拟合函数模型解决简单的实际问题.
难点:如何建立适当的函数模型来解决实际问题.
教学过程
设计思想
一、创设应用情境,引出问题
前面我们学习过两种函数模型的应用,分别是利用给定函数模型解决实际问题,建立确定性的函数模型解决问题,那么在既没有给出函数模型又无法建立确定性函数模型的情况下,又该如何解决实际问题呢?
二、组织探究
例1 下表是我校从实施研究性学习以来,高一年级段学生的研究性学习小论文在我市每年一次的评比中获奖的相关数据.
年份
1
2
3
4
5
篇数
14
21
27
35
41
请描点画出获奖篇数随年份变化的图象,并写出一个能基本反映这个变化现象的函数解析式.
设计意图
以学生熟悉的实际问题为背景,激活学生的原有知识,形成学生的“再创造”欲望,让学生在熟悉的环境中发现新知识,使新知识和原知识形成联系,同时也体现了数学的应用价值.
探究:
(1)组织学生读、议,小组讨论该如何分析题目?
①列表
c1
c2
c3
c4
c5
c6
1
14
2
21
3
27
4
35
5
41
②描点
图1
③根据点的分布特征,可以考虑以一次函数y=kx+b(k≠0)作为描绘篇数与年份的变化趋势.取(1,14),(4,35),有解得这样,我们就得到函数模型y=7x+7.
作出此模型函数图象如下:
图2
根据上述图象,我们发现这个函数模型与已知数据的拟合程度较好,这说明它能较好地反映我校获奖篇数与年份的变化趋势.
变式训练
我校自实施研究性学习以来,全校三个年级段学生的研究性学习小论文在我市每年一次的评比中第1年、第2年、第3年的获奖篇数分别是52,61,68.为了预测以后每年的获奖篇数,甲同学选择了模型y=ax2+bx+c,乙同学选择了模型y=p·qx+r,其中y为篇数,x为年份.a,b,c,p,q,r都是常数.结果第4年、第5年、第6年的获奖篇数分别为74、78、83,你认为谁选择的模型较好?探究组织学生读、议,小组讨论分析、解决问题.
解:(1)列表
c1
c2
c3
c4
c5
c6
1
52
2
61
3
68
4
74
5
78
6
83
(2)画散点图
图3
(3)确定函数模型
由前三组数据,用计算器确定函数模型:
甲:y1=-x2+12x+41;
乙:y2=-52.07×0.778x+92.5.
(4)作出函数图象进行比较
计算x=6时,y1=77,y2=81.0.
图4
可见,乙同学选择的模型较好.
设计意图
此变式训练是为进一步巩固例1的拟合函数思想,培养学生的应用数学意识与提高解决问题能力.
例2 我校不同身高的男、女同学的体重平均值如下表:
身高/cm
150
152
154
156
158
160
162
164
166
168
170
172
体重/kg
42.9
44.8
46.5
48.5
50.2
52.3
54.2
56.6
59.1
61.4
63.8
66.2
(1)根据表中提供的数据,能否建立恰当的函数模型,使它能比较近似地反映我校同学体重y kg与身高x cm的函数关系?试写出这个函数模型的解析式.
(2)若体重超过相同身高的同学体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,下面请各位同学对照拟合函数模型来测算自己的体重是否正常?
设计意图
本例题以学生熟悉的问题出发再创设情境,引起学生的学习兴趣,再次引发学生构建自身基础上的“再创造”,并通过小组合作学习,培养学生解决问题的能力,应用数学的意识.
问题(1)的探究:
①通过学生自主活动分析数据,发现本题只给出了通过测量得到的数据表,要想由这些数据直接发现函数模型是困难的.
②教师引导学生将表中的数据输入计算器或计算机,画出它们的散点图.教师提问所作散点图与已知的哪个函数图象最接近,从而选择这个函数模型.
图5
由图可发现指数型函数y=a×bx的图象可能与散点图的吻合较好,可选之.
③教师再问:如何确定拟合函数模型中a,b值.
④教师把学生每4人分成一小组合作探究,求出拟合函数模型中a,b的值,然后画出图形,得到的拟合函数效果如何?
⑤教师下去巡视后,请小组中的1名成员上台到实物投影处讲解.
组1:选取(168,61.4),(172,66.2)两组数据,用计算器算出a=2.6,b=1.019.
这样得到函数模型为y=2.6×1.019x,画出这个函数的图象与散点图.
图6
我们发现,函数y=2.6×1.019x不能很好地反映我校学生身高与体重关系.
组2:选取(154,46.5),(168,61.4)两组数据,用计算器算出a=2.2,b=1.02.
这样得出函数模型为y=2.2×1.02x,画出这个函数的图象与散点图.
图7
我们发现,散点图上的点基本上或大多数接近函数y=2.2×1.02x的图象,所以函数y=2.2×1.02x很好地刻画了我校学生身高与体重的关系.
教师引导学生回顾问题的特点及解决问题的过程与方法.本题需要判断选择的函数模型与问题所给数据的吻合程度,当取表中不同的两组数据时,得到的函数解析式可能会不一样,需不断修正.当然本题若运用计算器或计算机的拟合功能,那么获得的函数模型会更精确,下课后同学们自己试一试,并且本例题体现了一个完整的建立函数模型进而解决问题的过程.
在教师引导下,请一学生归纳解决问题的基本过程:
设计意图
引导学生进行反思和总结,并将之一般化,用流程的形式表达出来,培养了学生的反思能力及总结提升的能力.
问题(2)探究:
由于是研究学生自身的体重问题,因而学生的兴趣很高,每人很快都编好了自己的问题,解答起来.如一男生身高175 cm,体重80 kg,他的计算如下:
将x=175代入y=2.2×1.02x,得y=2.2×1.02175≈70.4.
由于80÷70.4≈1.136<1.2.
所以,该男生体重正常.
设计意图
采用师生平等对话交流,学生单独完成的模式.因为本题是测算自己本身体重的问题,所以学生兴趣很高.本题问题难度不大,但意义重大,是培养数学应用意识的重要素材,即用拟合函数来预测自己关心的日常生活问题,学生体验过程方式教学,体现了新课程的理念.
三、练习反馈
教材本节练习1.
学生完成后在小组中互相批改、交流.
设计意图
本环节以个别指导为主,体现面对全体学生的理念,使学生及时巩固所学知识、方法,以达到教学目标.
四、小结反思
以小组中1人总结,3人倾听的方式,对本课内容进行自主小结,教师归纳强调建立拟合函数模型解决实际问题的基本过程.
设计意图
提高学习主动性,培养学生表达、交流的数学能力,自主小结的形式是将课堂还给学生,是对所学内容的回顾与梳理.
五、课外作业
教材习题3.2A组1题,B组1题.
六、课外实践
通过拟合函数模型看温州经济发展.
上网收集1995~2005年温州的国内生产总值、财政收支、对外经济三项数据,建立适当的拟合函数模型,画出拟合函数模型的图象,并通过拟合函数图象来预测温州在2010年的经济发展状况.
设计意图
课外作业为巩固作业,课外实践为拓展作业,培养学生应用数学知识、提高解决问题的能力,培养学生的探究和再创造能力.
教学流程
——实际问题引入,激发学生兴趣.
↓
——画出散点图,建立模型,体会不同函数模型拟合的准确程度.
↓
——由数据画出散点图,建立拟合函数模型,尝试选择不同的函数拟合数据并不断修正.
↓
——师生交流共同小结,归纳建立拟合函数模型应用题的求解方法与步骤.
↓
——强化基本方法及过程,规范基本格式.
↓
——收集生活中的具体实际问题,运用拟合函数思想来解决,培养问题意识及提高应用数学的能力.
知识结构
问题探讨
(1)第三章的3.2.2函数模型的应用实例是否可以设置为3课时,给定的函数模型、建立确定性函数模型、建立拟合函数模型解决实际问题各设置1课时,这样可以让学生感受到函数的广泛应用,真实体验到数学是有用的;体现新课程的问题性,应用性特点;培养学生的问题意识,更加拓展学生数学活动的空间,发展学生“做数学”“用数学”的意识.
(2)在函数模型的应用中,建立拟合函数模型解决实际问题是实际应用最广泛、学生最陌生、也是难度最大的,尤其是如何建立适当的拟合函数模型来解决实际问题.建议在教材中是否可安排更多的建立拟合函数模型解决实际问题的例题,加深学生对如何建立适当拟合函数模型的理解.并在练习中多安排渗透拟合函数思想的思考题.
学习资源
《普通高中课程标准实验教科书·数学1》第三章“函数的应用”简介 白涛
http://www.pep.com.cn/200406/ca506858.html