教学设计
2.1.4 平面与平面之间的位置关系
作者:邓新国
整体设计
教学分析
空间中平面与平面之间的位置关系是立体几何中最重要的位置关系,平面与平面的相交和平行是本节的重点和难点.空间中平面与平面之间的位置关系是根据交点个数来定义的,要求学生在公理3的基础上会判断平面与平面之间的位置关系.本节重点是结合图形判断空间中平面与平面之间的位置关系.
三维目标
1.结合图形正确理解空间中平面与平面之间的位置关系.
2.进一步熟悉文字语言、图形语言、符号语言的相互转换.
3.培养学生全面思考问题的能力.
重点难点
平面与平面的相交和平行.
课时安排
1课时
教学过程
复习
1.直线与直线的位置关系:相交、平行、异面.
2.直线与平面的位置关系:
①直线在平面内——有无数个公共点,
②直线与平面相交——有且只有一个公共点,
③直线与平面平行——没有公共点.
导入新课
思路1.(情境导入)
拿出两本书,看作两个平面,上下、左右移动和翻转,它们之间的位置关系有几种?
思路2.(事例导入)
观察长方体(图1),围成长方体ABCDA′B′C′D′的六个面,两两之间的位置关系有几种?
图1
推进新课
新知探究
提出问题
①什么叫做两个平面平行?
②两个平面平行的画法.
③回忆两个平面相交的依据.
④什么叫做两个平面相交?
⑤用三种语言描述平面与平面之间的位置关系.
活动:先让学生思考后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.
问题①引导学生回忆直线与平面平行的定义.
问题②怎样体现两个平面平行的特点.
问题③两个平面有一个公共点,两平面是否相交.
问题④回忆公理3.
问题⑤鼓励学生自我训练.
讨论结果:
①两个平面平行——没有公共点.
②画两个互相平行的平面时,要注意使表示平面的平行四边形的对应边平行,如图2.
图2 图3
③如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.此时,就说两平面相交,交线就是公共点的集合,这就是公理3.如图3,用符号语言表示为:P∈α且P∈β⇒α∩β=l,且P∈l.
④两个平面相交——有一条公共直线.
⑤如果两个平面没有公共点,则两平面平行⇔若α∩β=∅,则α∥β.如果两个平面有一条公共直线,则两平面相交⇔若α∩β=AB,则α与β相交.
两平面平行与相交的图形表示如图4.
图4
应用示例
思路1
1 已知平面α,β,直线a,b,且α∥β,a⊂α,b⊂β,则直线a与直线b具有怎样的位置关系?
活动:学生自己思考或讨论,再写出正确的答案.教师在学生中巡视,发现问题及时纠正,并及时评价.
解:如图5,直线a与直线b的位置关系为平行或异面.
图5
2 如果三个平面两两相交,那么它们的交线有多少条?画出图形表示你的结论.
解:三个平面两两相交,它们的交线有一条或三条,如图6.
图6
变式训练
α、β是两个不重合的平面,在下列条件中,可判定α∥β的是( )
A.α、β都平行于直线l、m
B.α内有三个不共线的点到β的距离相等
C.l、m是α内的两条直线,且l∥β,m∥β
D.l、m是两条异面直线,且l∥α、m∥α、l∥β,m∥β
分析:如图7,分别是A、B、C的反例.
图7
答案:D
点评:判断正误要结合图形,并善于发现反例,即注意发散思维.
思路2
1 α∩β=l,a⊂α,b⊂β,试判断直线a、b的位置关系,并画图表示.
活动:学生自己思考或讨论,再写出正确的答案.教师在学生中巡视,发现问题及时纠
正,并及时评价.
解:如图8,直线a、b的位置关系是平行、相交、异面.
图8
变式训练
α∩β=l,a⊂α,b⊂β,b∩α=P,试判断直线a、b的位置关系,并画图表示.
解:如图9,直线a、b的位置关系是相交、异面.
图9
直线a、b不可能平行,这里仅要求学生结合图形或实物模型加以体会,学完下一节后可以证明.
点评:结合图形或实物模型判断直线与平面的位置关系,目的在于培养学生的空间想象能力.
2 如图10,在棱长为a的正方体ABCDA1B1C1D1中,M、N分别是AA1、D1C1的中点,过D、M、N三点的平面与正方体的下底面相交于直线l,
图10
(1)画出l的位置;
(2)设l∩A1B1=P,求PB1的长.
解:(1)平面DMN与平面AD1的交线为DM,
则平面DMN与平面A1C1的交线为QN.
QN即为所求作的直线l.如图10.
(2)设QN∩A1B1=P,
∵△MA1Q≌△MAD,∴A1Q=AD=a=A1D1,
∴A1是QD1的中点.又A1P∥D1N,
∴A1P=D1N=C1D1=a.
∴PB1=A1B1-A1P=a-a=a.
变式训练
画出四面体ABCD中过E、F、G三点的截面与四面体各面的交线.
解:如图11,分别连接并延长线段EF、BD,
图11
∵线段EF、BD共面且不平行,∴线段EF、BD相交于一点P.
∴连接GP交线段CD于H,分别连接EG、FH,EG、GH、FH、EF即为所作交线.
点评:利用公理3作两平面的交线是高考经常考查的内容,是两平面关系的重点.
知能训练
三棱柱的各面把空间分成几部分?
解:分为21部分.
拓展提升
已知平面α∩平面β=a,b⊂α,b∩a=A,c⊂β且c∥a,
求证:b、c是异面直线.
证明:反证法:若b与c不是异面直线,则b∥c或b与c相交.
(1)若b∥c.∵a∥c,∴a∥b.
这与a∩b=A矛盾.
(2)若b、c相交于B,则B∈β.又a∩b=A,∴A∈β.
∴AB⊂β,即b⊂β.这与b∩β=A矛盾.
∴b,c是异面直线.
课堂小结
本节主要学习平面与平面的位置关系,平面与平面的位置关系有两种:
①两个平面平行——没有公共点;
②两个平面相交——有一条公共直线.
另外,空间想象能力的培养是本节的重点和难点.
作业
课本习题2.1 B组1、2、3.
设计感想
本节内容较少,与上一节课一样,教材没有讨论面面平行的判定和性质,只介绍了平面与平面的位置关系.平面与平面的位置关系是立体几何的重要位置关系,虽没有严格推理和证明,却正好发挥我们的空间想象能力和发散思维能力.
备课资料
两个平面把空间分为几部分?三个平面可以把空间分为几部分?
解:(1)如图12,两个平面把空间分为3部分或4部分.
图12
(2)如图13,三个平面把空间分为4部分或6部分或7部分或8部分.
图13