7.1 为什么要证明
第一环节:验证活动(1)
活动内容:
某学习小组发现,当n=0,1,2,3时,代数式n2-n+11的值都是质数,于是得到结论:对于所有自然数n, n2-n+11的值都是质数.你认为呢?与同伴交流.
参考答案:列表归纳为
n
0
1
2
3
4
5
6
7
8
9
10
11
…
n2-n+11
11
11
13
17
23
31
41
53
67
83
101
121
是否为质数
是
是
是
是
是
是
是
是
是
是
是
不是
活动目的:
对现在结论进行验证,让学生感受到知识有时具有一定的迷惑性(欺骗性),从而对不完全归纳的合理性产生怀疑,为下一步的学习提供必要的精神准备.
注意事项:
学生通过列表归纳,根据自己以往的经验判断,在n=10以前都一直认为n2-n+11是一个质数,但当n=10时,找到了一个反例,进而发现不能根据少数几个现象轻易肯定某个数学结论的正确性.
第二环节:猜想并验证活动(2)
活动内容:
如图,假如用一根比地球的赤道长1米的铁丝将地球赤道围起来,那么铁丝与地球赤道之间的间隙能有多大(把地球看成球形)?能放进一个红枣吗?能放进一个拳头吗?
参考答案:设赤道周长为c,铁丝与地球赤道之间的间隙为 :
它们的间隙不仅能放进一个红枣,而且也能放进一个拳头.
活动目的:
通过理性的计算,验证了很难想像到的结论,让学生产生思维上的碰撞,进而对自己的直观感觉产生怀疑,再次为论证的合理性提供素材.
4
注意事项:
要充分让学生发表自己的见解,首先让学生对自己的结论确信无疑,再进一步计算,结果与学生的感觉产生矛盾,切忌直接进行计算,把结论告诉学生,这样就达不到预想的要求,不能让学生留下深刻的印象.
第三环节:猜想并验证活动(3)
活动内容:
如图,四边形ABCD四边的中点E、F、G、H,度量四边形EFGH的边和角,你能发现什么结论?改变四边形ABCD的形状,还能得到类似的结论吗?
A
B
E
C
D
F
G
H
参考答案:连接AC.
∵E、F、G、H分别是四边形ABCD四边中点,
∴EF∥AC,EF=AC;GH∥AC,GH=AC;
∴EF平行且等于GH,
∴四边形EFHG为平行四边形.
活动目的:
通过对图形的直观感受得出结论,但要使学生清楚地知道对几何结论的验证,通常是用严谨的逻辑推理来论述.
注意事项:
让学生大胆地进行预测,但要让学生说清理由,让学生了解几何证明的必要性.
第四环节:归纳与总结
活动内容:
① 通过以上三个数学活动,使学生对每一个问题的结论的正确性有了怀疑,从而知道了由观察、猜想等渠道得到的结论还必须经过有效的证明才能对其进行肯定.也即:要判断一个数学结论是正确,仅观察、猜想、实验还不够,必须经过一步一步, 有根有据的推理.
②举例说明“推理意识”与推理方法.
活动目的:
使学生理解仅有对图形的直观感受是不够的,从而帮助学生建立推理意识.
注意事项:
4
让学生用自己的语言进行叙述,培养学生的表达能力.
第五环节:反馈练习
活动内容:1.如图中两条线段a与b的长度相等吗?请你先观察,再度量一下.
答案:a与b的长度相等.
第1小题图 第2小题图
2.如图中三条线段a、b、c,哪一条线段与线段d在同一直线上?请你先观察,再用三角尺验证一下.
答案:线段b与线段d在同一直线上.
3.当n为正整数时,n2+3n+1的值一定是质数吗?
答案:经验证:当n为正整数时,n2+3n+1的值一定是质数.
第六环节:课堂小结
活动内容:
今天这节课你学到了什么知识?
参考答案:① 要说明一个数学结论是否正确,无论验证多少个特殊的例子,也无法保证其正确性.
②要确定一个数学结论的正确性,必须进行一步一步、有根有据的推理.
活动目的:
通过学生的总结,使学生对证明的必要性有一个清楚的认识,数学杜绝随意性,数学是严密的科学.
注意事项:
通过前三个例题的感受以及反馈练习,学生都清楚地知道推理、论证的必要性,了解了数学不是一种直观感受,而是一种严密的科学.
第七环节 巩固练习
4
习题7.1第2,3题.
教学反思
本节课的教学设计是建立在“以学生的发展为本,为学生的终身学习奠定基础”的教育理念上,融入了新课标的思想内涵,尊重学生的直观感觉,并从学生的直观感觉出发逐步将学生的思维引向严密性、逻辑证明等方面,不是一味地强调证明的必要性,而是通过几个事实的说明来让学生意识到证明的必要性,设计中突出体现了学生的主体地位.
在教学设计中,力求让学生学会将生活问题数学化,用一个有趣的生活问题:“用一根铁丝将地球赤道围起来”引起学生的兴趣并进行猜测,然后通过计算得出一个令人很意外的结果,同时也培养了学生“用数学”的意识,并且使得学生有一种感受:数学来源于生活,服务于生活,同时也要用数学的眼光看世界,切勿盲信于自己的直观感觉.
本节课通过事例让学生体会检验数学结论的常用方法:实验验证、举出反例、推理等.符合学生的认识特点和知识水平。有助于培养学生理解问题、分析问题、解决问题的能力.
4