直角三角形的性质和判定(Ⅰ)第2课时教案(湘教版八年级数学下册)
加入VIP免费下载

本文件来自资料包: 《直角三角形的性质和判定(Ⅰ)第2课时教案(湘教版八年级数学下册)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
课题 直角三角形的性质和判定(Ⅰ)‎ 共 2课时 第 2课时 课型 新课 教学目标 ‎1.知识与技能:掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用 ‎2. 过程与方法:通过图形的变换,引导学生发现并提出新问题,进行类比联想,促进学生的思维向多层次多方位发散。培养学生的创新精神和创造能力 ‎3.情感态度与价值观:从生活的实际问题出发,引发学生学习数学的兴趣。从而培养学生发现问题和解决问题能力 重点难点 ‎1、重点:直角三角形斜边上的中线性质定理的应用 ‎2、难点::直角三角形斜边上的中线性质定理的证明思想方法 教学策略 观察、比较、合作、交流、探索 教 学 活 动 课前、课中反思 ‎(一) 引入:如果你是设计师:(提出问题)‎ ‎2008年将建造一个地铁站,设计师设想把地铁站的出口建造在离附近的三个公交站点45路、13路、23路的距离相等的位置。而这三个公交站点的位置正好构成一个直角三角形。如果你是设计师你会把地铁站的出口建造在哪里?‎ ‎(通过实际问题引出直角三角形斜边上的中点和三个顶点之间的长度关系,引发学生的学习兴趣。)‎ 动一动 想一想 猜一猜 (实验操作)‎ 请同学们分小组在模型上找出那个点,并说出它的位置。‎ 请同学们测量一下这个点到这三个顶点的距离是否符合要求。‎ 通过以上实验请猜想一下,直角三角形斜边上的中线和斜边的长度之间有什么关系?‎ ‎(通过动手操作找到那个点,通过测量的结果让学生猜测斜边的中线与斜边的关系。)‎ ‎(二) 新授:‎ 提出命题:直角三角形斜边上的中线等于斜边的一半 证明命题:(教师引导,学生讨论,共同完成证明过程)‎ 推理证明思路: ①作点D1 ②证明所作点D1 具有的性质 ③ 证明点D1 与点D重合 通过图形的变换,引导学生发现并提出新问题,进行类比联想,促进学生的思维向多层次多方位发散。培养学生的创新精神和创造能力 - 2 -‎ 应用定理:‎ 例1、已知:如图,在△ABC中,∠B=∠C,AD是∠BAC的平分线,‎ E、F分别AB、AC的中点。‎ 求证:DE=DF ‎ 分析:可证两条线段分别是两直角三角形的斜边上的中线,再证两斜边相等即可证得。‎ ‎(上一题我们是两个直角三角形的一条较长直角边重合,现在我们将图形变化使斜边重合,我们可以得到哪些结论?)‎ 练习变式:‎ 已知:在△ABC中,BD、CE分别是边AC、AB上的高,F是BC的中点。‎ 求证:FD=FE 练习引申:‎ ‎(1)若连接DE,能得出什么结论?‎ ‎(2)若O是DE的中点,则MO与DE存在什么结论吗?‎ 上题两个直角三角形共用一条斜边,两个直角三角形位于斜边的同侧。如果共用一条斜边,两个直角三角形位于斜边的两侧我们又会有哪些结论? ‎ ‎2、已知:∠ABC=∠ADC=90º,E是AC中点。你能得到什么结论?‎ 例2、求证:一个三角形一边上的中线等于这一边的一半,那么这个三角形是直角三角形 练习 ‎(三)、小结:‎ 通过今天的学习有哪些收获?‎ ‎(四)、作业: 习题A组 1、2‎ 课后反思 - 2 -‎

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料