《多边形》第1课时教案(湘教版八年级数学下册)
加入VIP免费下载

本文件来自资料包: 《《多边形》第1课时教案(湘教版八年级数学下册)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
课题 多边形 共 2课时 第1 课时 课型 新课 教学目标 ‎1.知识与技能:经历探索多边形的内角和公式的过程;会应用公式解决问题,培养学生把未知转化为已知进行探究的能力,在探究活动中,进一步发展学生的说理能力与简单的推理能力 ‎2. 过程与方法:经历探索多边形的外角和公式的过程.进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系,探索并了解多边形的外角和公式,进一步发展学生的说理和简单推理的意识及能力 ‎3.情感态度与价值观:经历多边形外角和的探索过程,培养学生主动探索的习惯;通过对内角、外交之间的关系,体会知识之间的内在联系;培养学生勇于实践、大胆创新的精神,使学生认识到数学来源于实践,又反过来作用于实践的观点 重点难点 ‎1、重点:经历探索多边形的内角和与外角和公式的过程 ‎2、难点:推导多边形的内角和与外角和公式.灵活运用公式解决简单的实际问题.‎ 教学策略 自导自主学习 教 学 活 动 课前、课中反思 ‎(一)、复习提问 ‎1.什么叫三角形? ‎ ‎2.三角形的内角和是多少?‎ ‎3.什么叫三角形的外角?什么叫外角和?三角形的外角和是多少?‎ ‎(二)、探究发现,认识新知 ‎ 1.多边形的概念,‎ ‎ 三角形有三个内角、三条边,我们也可以把三角形称为三边形(但习惯称三角形)。我们知道:在平面内,不在同一直线上的三条线段首尾顺次连结组成的平面图形叫三角形。‎ 你能说出什么叫四边形、五边形吗?‎ 如图(1)它是由平面内不在同一直线上的4条线段首尾顺次连结组成的图形,记为四边形ABCD。(按顺时针或逆时针方向书写)‎ 如 经历探索多边形的内角和公式的过程;会应用公式解决问题,培养学生把未知转化为已知进行探究的能力,在探究活动中,进一步发展学生的说理能力与简单的推理能力 - 4 -‎ 图(2)是由平面内不在同一直线上的5条线段首尾顾次连结组成的图形,记为五边形ABCDE。‎ A B C D E 图(2)‎ D C B A 图(1)‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ 一般地,在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形。组成多边形的各条线段叫作多边形的边,每相邻两条边的公共端点叫作多边形的顶点,连结不相邻的两个顶点的线段叫作多边形的对角线,相邻两边组成的角叫作多边形的内角,简称多边形的角。‎ 图(3)‎ 与三角形类似如图,∠A、∠D、∠C、∠ABC是四边形ABCD的四个内角,延长 AB、CB得四边形ABCD的两个外角∠CBE和∠ABF,这两个外角是对顶角。一个n边形有n个内角,有2n个外角。‎ 如果多边形的各边都相等,各内角也都相等,则称为正多边形,如正三角形、正四边形(正方形)、正五边形等等。连结多边形不相邻的两个顶点的线段叫做多边形的对角线,如图1,线段AC是四边形 ABCD的对角线,如图2,线段AD、AC是四边形ABCDE的对角线,如图3中线段AC、AD、AE是六边形ABCDEF的对角线。‎ ‎ 问:(1)四边形有几条对角线?(两条AC、BD)    ‎ ‎(2)五边形有几条对角线?‎ ‎ ‎ - 4 -‎ ‎ 以A为端点的对角线有两条AC、AD,同样以月为端点的对角线也有2条,以C为端点也有2条,但AC与CA是同一条线段,以D为端点的两条DA、DB与AD、BD都分别表示同一条线段。所以只有5条。‎ ‎ (3)六边形有几条对角线?n边形呢? 六边形有9条对角线。‎ ‎ 从以上分析可知从n边形的一个顶点引对角线,可以引(n-3)条, (除本身这个点以及和这点相邻的两点外),那么n个顶点,就有n(n- 3)条,但其中每一条都重复计算一次,如AB与BA,所以n边形一共有条对角线。‎ ‎ 大家可以加以验证:当n=3时,没有对角线,当n=4时,有2条;当n=5时,有5条:当n=6时,有9条…‎ ‎ 2.多边形的内角和公式。‎ ‎ 三角形是边数最少的多边形,它的内角和等于180°,那么一般n边形是否也有内角和公式呢?让我们先从四边形,正边形,六边形……开始。‎ ‎ 从上面对角线的研究可知,一条对角线把四边形分成2个三角形,这两个三角形的内角和的和就是四边形的内角和,五边形的内角和就是图中3个三角表内角和的和。‎ 让学生填写下表由此,你可以得到多边形的内角和公式吗?‎ 边数 图形名称 对角线条数 划分成的三角形个数 多边形的内角和 ‎3‎ ‎0‎ ‎1‎ ‎1×180°‎ ‎4‎ ‎1‎ ‎2‎ ‎2×180°‎ ‎5‎ ‎6‎ ‎…‎ ‎…‎ ‎…‎ ‎…‎ ‎…‎ ‎12‎ ‎…‎ ‎…‎ ‎…‎ ‎…‎ ‎…‎ n n边形的内角和=(n-2)·180°知道一个多边形的内角和,根据公式也可以求边数n。‎ 例1.一个多边形的内角和等于2340°,求它的边数。‎ ‎ 问题:一个正多边形的一个内角为150°‎ - 4 -‎ ‎,你知道它是几边形?分析:正多边形的每个内角都相等。‎ ‎(三)、巩固练习 课本后面练习 ‎(四)、小结 本节课我们通过把多边形划分成若干个三角形,用三角形内角和去求多边形的内角和,从而得到多边形的内角和公式为(n-2)·180°, 它揭示了多边形内角和与边数之间的关系.。这种化未知为已知的转化方法,必须在学习中逐步掌握. ‎ ‎(五)、作业 课本后面练习 课后反思 - 4 -‎

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料