课题
多边形
共 2课时
第 2课时
课型
新课
教学目标
1.知识与技能:经历探索多边形的外角和公式的过程;会应用公式解决问题,培养学生把未知转化为已知进行探究的能力,在探究活动中,进一步发展学生的说理能力与简单的推理能力
2. 过程与方法:经历探索多边形的外角和公式的过程.进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系,探索并了解多边形的外角和公式,进一步发展学生的说理和简单推理的意识及能力
3.情感态度与价值观:经历多边形外角和的探索过程,培养学生主动探索的习惯;通过对内角、外交之间的关系,体会知识之间的内在联系;培养学生勇于实践、大胆创新的精神,使学生认识到数学来源于实践,又反过来作用于实践的观点
重点难点
1、重点:经历探索多边形的内角和与外角和公式的过程
2、难点:推导多边形的内角和与外角和公式.灵活运用公式解决简单的实际问题.
教学策略
自导自主学习
教 学 活 动
课前、课中反思
(一)、复习提问
1.什么叫三角形?
2.三角形的内角和是多少?
3.什么叫三角形的外角?什么叫外角和?三角形的外角和是多少?
(二)、探究发现,认识新知
1.多边形的概念,
三角形有三个内角、三条边,我们也可以把三角形称为三边形(但习惯称三角形)。我们知道:在平面内,不在同一直线上的三条线段首尾顺次连结组成的平面图形叫三角形。
你能说出什么叫四边形、五边形吗?
如图(1)它是由平面内不在同一直线上的4条线段首尾顺次连结组成的图形,记为四边形ABCD。(按顺时针或逆时针方向书写)
如
经历探索多边形的外角和公式的过程;会应用公式解决问题,培养学生把未知转化为已知进行探究的能力,在探究活动中,进一步发展学生的说理能力与简单的推理能力
- 3 -
图(2)是由平面内不在同一直线上的5条线段首尾顾次连结组成的图形,记为五边形ABCDE。
A
B
C
D
E
图(2)
D
C
B
A
图(1)
A
一般地,在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形。组成多边形的各条线段叫作多边形的边,每相邻两条边的公共端点叫作多边形的顶点,连结不相邻的两个顶点的线段叫作多边形的对角线,相邻两边组成的角叫作多边形的内角,简称多边形的角。
图(3)
与三角形类似如图,∠A、∠D、∠C、∠ABC是四边形ABCD的四个内角,延长 AB、CB得四边形ABCD的两个外角∠CBE和∠ABF,这两个外角是对顶角。一个n边形有n个内角,有2n个外角。
2、多边形的外角和。
什么叫多边形的外角和。
与三角形的外角和一样,与多边形的每个内角相邻的外角有两个,这两个角是对顶角,从与每个内角相邻的两个外角中分别取一个相加,得到的和称为多边形的外角和。
多边形的外角和是否也可以用公式表示呢?下面我们也来探讨。
因为n边形的一个内角与它的相邻的外角互为补角,所以可先求出多边形的内角与外角的总和,再减去内角和,就可得到外角和。
n边形的内角与外角的总和为n·180°
n边形的内角和为(n-2)·180°
那么n边形的外角和为n·180°-(n-2)·180°
= n·180°-n·180°+360°
=360°
- 3 -
这就是说多边形的外角和与边数无关,都等于360°。
例2.一个正多边形的一个内角比相邻外角大36°,求这个正多边形的边数。
分析:正多边形的各个内角都相等,那么各个外角也都相等,而多边形的外角和是360°,因此只要求出每个外角度数,就可知是几边形了。
点拨;多边形的外角和等于360°,与边数无关,故常把多边形内角的问题转化为外角和来处理。
(三)、巩固练习
课本后面练习
(四)、小结
本节课我们通过把多边形划分成若干个三角形,用三角形内角和去求多边形的内角和,从而得到多边形的内角和公式为(n-2)·180°, 它揭示了多边形内角和与边数之间的关系.。这种化未知为已知的转化方法,必须在学习中逐步掌握.
(五)、作业
课本后面练习
课后反思
- 3 -