8.1 二元一次方程组
教学目标
1. 能说出二元一次方程、二元一次方程组和它的解的概念,会检验所给的一组未知数的值是否二元一次方程、二元一次方程组的解.
2. 让学生学会用数学思想解决实际问题.
3. 体会实际问题中常会遇到的有关多个未知量间互相依赖、影响的问题,懂得二元一次方程组是反映现实世界多个量之间相等关系的一种有效的数学模型,能感受方程的作用.
教学重点
二元一次方程、二元一次方程组、二元一次方程组的解,以及检验一对数值是不是某个二元一次方程组的解.
教学难点
弄清二元一次方程组的解的概念,对于一个二元一次方程,只要给出其中任一个未知数的取值,就必定能找到适合这个方程的另一个未知数的值,进一步理解二元一次方程有无数个解,以及二元一次方程组(未知数的个数与独立等量关系个数相等)有唯一确定的解.
教学过程
一、创设情境
篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队在10场比赛中得到16分,那么这个队胜负场数分别是多少?
思考:这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?
由问题知道,题中包含两个必须同时满足的条件:
胜的场数+负的场数=总场数,
胜场积分+负场积分=总积分.
这两个条件可以用方程
2
x+y=10
2x+y=16.
表示.
上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.
把两个方程合在一起,写成
x+y=10,
2x+y=16.
就组成了一个方程组.
二、探究新知
满足方程x+y=10,且符合问题的实际意义的x、y的值有哪些?把它们填入表中.
x
y
上表中哪对x、y的值还满足方程2x+y=16?
由上表可知,x=0,y=10; x=1,y=9;…; x=10,y=0 使方程x+y=10两边的值相等,它们都是方程x+y=10的解.如果不考虑方程x+y=10与上面实际问题的联系,那么 x=-1,y =11; x= 0.5,y=9.5…也都是这个方程的解.
一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.
二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.
三、课堂练习
教材练习.
四、布置作业
教学反思:
2