导数的实际应用(一)教案(人教版高中数学选修2-2)
加入VIP免费下载

本文件来自资料包: 《导数的实际应用(一)教案(人教版高中数学选修2-2)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
教学方案 章节 课时 备课人 ‎ 二次备课人 课题名称 导数的实际应用(一)‎ 三维目标 ‎1理解取得极值的必要条件(导数在极值点两端异号)和充分条件 ‎2会求一些实际问题(一般指单峰函数)的最大值和最小值.---------用材最省的问题,体积最大,费用最少问题----‎ 重点目标 用导数方法求函数最值的方法步骤 难点目标 求一些实际问题的最大值与最小值 导入示标 回顾教材,简单复习求最值的方法和步骤。‎ 例1 。教材P35面的例3‎ 解答:略。‎ 例2.某公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(3≤a≤5)的管理费,预计当每件产品的售价为x元(9≤a≤11)时,一年的销售量为(12-x)2万件.‎ ‎(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;‎ ‎(2)当每件产品的售价为多少元时,分公司一年的利润L最大,并求出L的最大值Q(a).‎ 目标三导 学做思一:归纳总结 生活中经常遇到求利润最大,用料最省、效率最高等问题,这些问题问题经常被称为优化问题。通过前面的学习,导数是解决函数最大或最小问题的有力工具,本节我们用导数解决一些生活中的实际问题。‎ 学做思二:练习 优化问题可以涉及到社会的各行各业,如何正确的使用导数是一个真正解决实际问题的根本。‎ 问题一:费用最省问题 设有一个容积为V一定的含铝合金的圆柱形铁桶,已知单位面积的铝合金的价格是铁的3倍,问如何设计使总造价最小?‎ 解答:设圆柱体高为h,底面半径为r,又设单位面积造铁的价格为m,桶的总价为y,则,由得 所以 问题二面积、体积最大问题 在边长为‎60Cm的正方形铁皮的四角上切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱子的边长是多少时箱子容积最大?最大容积是多少?‎ 解答:设箱子的高为x厘米,则箱子的底边长为(60-2x)厘米,则地箱子容积V关于x的函数为得到x=10或者x=30通过判断可得x=10时最大,所以当x=10时,边长为‎40厘米时,箱子体积最大为‎16000立方米 学做思三:师生讨论,如何求实际问题中只有唯一极值点问题的优化问题。‎ 例题示范:‎ 在高为H,底面半径为R的圆锥内作一内接圆柱体,则圆柱体的半径r为多大时 (1) 圆柱体的体积最大?‎ (2) 圆柱体的表面积最大?‎ 解答:略。‎ 达标检测 例3.请您设计一个帐篷。它下部的形状是高为‎1m的正六棱柱,上部的形状是侧棱长为‎3m的正六棱锥(如右图所示)。试问当帐篷的顶点O到底面中心的距离为多少时,帐篷的体积最大?‎ 反思总结 ‎①如何解决实际问题的最大或者最小问题 ‎②高考典型例子 课后练习

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料