由莲山课件提供http://www.5ykj.com/ 资源全部免费
第44练 数形结合思想
[思想方法解读] 数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:①借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;②借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.
数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关系的精确刻画与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决.数形结合的思想,其实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围.
数学中的知识,有的本身就可以看作是数形的结合.如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的.
体验高考
1.(2015·北京)如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是( )
A.{x|-1<x≤0} B.{x|-1≤x≤1} C.{x|-1<x≤1} D.{x|-1<x≤2}
答案 C
解析 令g(x)=y=log2(x+1),作出函数g(x)的图象如图.
由 得
∴结合图象知不等式f(x)≥log2(x+1)的解集为{x|-10时,f(x)=ln x与x轴有一个交点,
即f(x)有一个零点.
依题意,显然当x≤0时,f(x)=-kx2也有一个零点,即方程-kx2=0只能有一个解.
令h(x)=,g(x)=kx2,则两函数图象在x≤0时只能有一个交点.
若k>0,显然函数h(x)=与g(x)=kx2在x≤0时有两个交点,即点A与原点O(如图所示).
显然k>0不符合题意.
若k