八年级数学下《9.4矩形、菱形、正方形》同步练习(苏科版含答案)
加入VIP免费下载
加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎9.4 矩形、菱形、正方形(选择、填空题)‎ 一.选择题 ‎1.菱形具有而一般平行四边形不具有的性质是(  )‎ A.对边相等 B.对角相等 C.对角线互相平分 D.对角线互相垂直 ‎2.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于(  )‎ A. B. C.5 D.4‎ ‎ ‎ ‎3.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为(  )‎ A.(3,1) B.(3,) C.(3,) D.(3,2)‎ ‎4.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为(  )‎ A. B. C. D.‎ ‎5.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为(  )‎ A.30° B.45° C.60° D.75°‎ ‎ ‎ ‎6.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是(  )‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 A.4.8 B.‎5 ‎C.6 D.7.2‎ ‎7.如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG∥BC,将矩形折叠,使点C与点O重合,折痕MN恰好过点G若AB=,EF=2,∠H=120°,则DN的长为(  )‎ A. B. C.﹣ D.2﹣‎ ‎8.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正确结论的个数是(  )‎ A.4个 B.3个 C.2个 D.1个 ‎9.如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ的最小值为(  )‎ A.2 B. C.2 D.3‎ ‎10.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于(  )‎ A.1: B.1:‎2 ‎C.2:3 D.4:9‎ ‎11.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是(  )‎ A.3 B.‎4 ‎C.5 D.6‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎ ‎ ‎12.如图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是(  )‎ A.1或9 B.3或‎5 ‎C.4或6 D.3或6‎ ‎13.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有(  )‎ A.2对 B.3对 C.4对 D.5对 ‎14.如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD上.若∠ECD=35°,∠AEF=15°,则∠B的度数为何?(  )‎ A.50 B.‎55 ‎C.70 D.75‎ ‎ ‎ ‎15.如图,面积为24的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上.若BF=,则小正方形的周长为(  )‎ A. B. C. D.‎ ‎16.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:‎ ‎①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,其中结论正确的有(  )‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 A.1个 B.2个 C.3个 D.4个 二.填空题 ‎17.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=  .‎ ‎18.如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为  .‎ ‎19.如图,已知菱形ABCD的边长2,∠A=60°,点E、F分别在边AB、AD上,若将△AEF沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF=  .‎ ‎20.如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为  .‎ ‎21.如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E=  度.‎ ‎22.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=  度.‎ ‎23.如图,在矩形ABCD中,点E、F分别在边CD、BC上,且DC=3DE=‎3a.将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP=  .‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎24.如图,正方形ABCD的边长为2,对角线AC、BD相交于点O,E是OC的中点,连接BE,过点A作AM⊥BE于点M,交BD于点F,则FM的长为  .‎ ‎25.如图,菱形ABCD的面积为‎120cm2,正方形AECF的面积为‎50cm2,则菱形的边长为  cm.‎ ‎26.如图,在平面直角坐标系中,边长为1的正方形OA1B‎1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B‎2C2,再以正方形OB1B‎2C2的对角线OB2为边作正方形OB2B‎3C3,以此类推…、则正方形OB2015B‎2016C2016的顶点B2016的坐标是  .‎ ‎27.如图,在平面内,四边形ABCD和BEFG均为正方形,则AG:DF:CE=  .‎ ‎28.如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,M为斜边AB上一动点,过M作MD⊥AC,过M作ME⊥CB于点E,则线段DE的最小值为  .‎ ‎29.如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB延长线于点F,则EF的长为  .‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎30.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于  .‎ ‎ ‎ 答案与解析 一.选择题 ‎1.(2016•莆田)菱形具有而一般平行四边形不具有的性质是(  )‎ A.对边相等 B.对角相等 C.对角线互相平分 D.对角线互相垂直 ‎【分析】由菱形的性质可得:菱形的对角线互相平分且垂直;而平行四边形的对角线互相平分;则可求得答案.‎ ‎【解答】解:∵菱形具有的性质:对边相等,对角相等,对角线互相平分,对角线互相垂直;‎ 平行四边形具有的性质:对边相等,对角相等,对角线互相平分;‎ ‎∴菱形具有而一般平行四边形不具有的性质是:对角线互相垂直.‎ 故选D.‎ ‎【点评】此题考查了菱形的性质以及平行四边形的性质.注意菱形的对角线互相平分且垂直.‎ ‎2.(2016•枣庄)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于(  )‎ A. B. C.5 D.4‎ ‎【分析】根据菱形性质求出AO=4,OB=3,∠‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.‎ ‎【解答】解:‎ ‎∵四边形ABCD是菱形,‎ ‎∴AO=OC,BO=OD,AC⊥BD,‎ ‎∵AC=8,DB=6,‎ ‎∴AO=4,OB=3,∠AOB=90°,‎ 由勾股定理得:AB==5,‎ ‎∵S菱形ABCD=,‎ ‎∴,‎ ‎∴DH=,‎ 故选A.‎ ‎【点评】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S菱形ABCD=是解此题的关键.‎ ‎3.(2016•苏州)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为(  )‎ A.(3,1) B.(3,) C.(3,) D.(3,2)‎ ‎【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.‎ ‎【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.‎ ‎∵D(,0),A(3,0),‎ ‎∴H(,0),‎ ‎∴直线CH解析式为y=﹣x+4,‎ ‎∴x=3时,y=,‎ ‎∴点E坐标(3,)‎ 故选:B.‎ ‎【点评】本题考查矩形的性质、坐标与图形的性质、轴对称﹣最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.‎ ‎4.(2016•威海)如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为(  )‎ A. B. C. D.‎ ‎【分析】连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.‎ ‎【解答】解:连接BF,‎ ‎∵BC=6,点E为BC的中点,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴BE=3,‎ 又∵AB=4,‎ ‎∴AE==5,‎ ‎∴BH=,‎ 则BF=,‎ ‎∵FE=BE=EC,‎ ‎∴∠BFC=90°,‎ ‎∴CF==.‎ 故选:D.‎ ‎【点评】本题考查的是翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.‎ ‎5.(2016•海南)如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为(  )‎ A.30° B.45° C.60° D.75°‎ ‎【分析】首先过点D作DE∥a,由∠1=60°,可求得∠3的度数,易得∠ADC=∠2+∠3,继而求得答案.‎ ‎【解答】解:过点D作DE∥a,‎ ‎∵四边形ABCD是矩形,‎ ‎∴∠BAD=∠ADC=90°,‎ ‎∴∠3=90°﹣∠1=90°﹣60°=30°,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∵a∥b,‎ ‎∴DE∥a∥b,‎ ‎∴∠4=∠3=30°,∠2=∠5,‎ ‎∴∠2=90°﹣30°=60°.‎ 故选C.‎ ‎【点评】此题考查了矩形的性质以及平行线的性质.注意准确作出辅助线是解此题的关键.‎ ‎6.(2016•宜宾)如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是(  )‎ A.4.8 B.‎5 ‎C.6 D.7.2‎ ‎【分析】首先连接OP,由矩形的两条边AB、BC的长分别为6和8,可求得OA=OD=5,△AOD的面积,然后由S△AOD=S△AOP+S△DOP=OA•PE+OD•PF求得答案.‎ ‎【解答】解:连接OP,‎ ‎∵矩形的两条边AB、BC的长分别为6和8,‎ ‎∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD=10,‎ ‎∴OA=OD=5,‎ ‎∴S△ACD=S矩形ABCD=24,‎ ‎∴S△AOD=S△ACD=12,‎ ‎∵S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=×5×PE+×5×PF=(PE+PF)=12,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 解得:PE+PF=4.8.‎ 故选:A.‎ ‎【点评】此题考查了矩形的性质以及三角形面积问题.此题难度适中,注意掌握辅助线的作法以及掌握整体数学思想的运用是解题的关键.‎ ‎7.(2016•资阳)如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG∥BC,将矩形折叠,使点C与点O重合,折痕MN恰好过点G若AB=,EF=2,∠H=120°,则DN的长为(  )‎ A. B. C.﹣ D.2﹣‎ ‎【分析】延长EG交DC于P点,连接GC、FH,则△GCP为直角三角形,证明四边形OGCM为菱形,则可证CG=OM=CM=OG=,由勾股定理求得GP的值,再由梯形的中位线定理CM+DN=2GP,即可得出答案.‎ ‎【解答】解:延长EG交DC于P点,连接GC、FH;如图所示:‎ 则CP=DP=CD=,△GCP为直角三角形,‎ ‎∵四边形EFGH是菱形,∠EHG=120°,‎ ‎∴GH=EF=2,∠OHG=60°,EG⊥FH,‎ ‎∴OG=GH•sin60°=2×=,‎ 由折叠的性质得:CG=OG=,OM=CM,∠MOG=∠MCG,‎ ‎∴PG==,‎ ‎∵OG∥CM,‎ ‎∴∠MOG+∠OMC=180°,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴∠MCG+∠OMC=180°,‎ ‎∴OM∥CG,‎ ‎∴四边形OGCM为平行四边形,‎ ‎∵OM=CM,‎ ‎∴四边形OGCM为菱形,‎ ‎∴CM=OG=,‎ 根据题意得:PG是梯形MCDN的中位线,‎ ‎∴DN+CM=2PG=,‎ ‎∴DN=﹣;‎ 故选:C.‎ ‎【点评】本题考查了矩形的性质、菱形的性质、翻折变换的性质、勾股定理、梯形中位线定理、三角函数等知识;熟练掌握菱形和矩形的性质,由梯形中位线定理得出结果是解决问题的关键.‎ ‎8.(2016•眉山)如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正确结论的个数是(  )‎ A.4个 B.3个 C.2个 D.1个 ‎【分析】①利用线段垂直平分线的性质的逆定理可得结论;‎ ‎②在△EOB和△CMB中,对应直角边不相等;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎③可证明∠CDE=∠DFE;‎ ‎④可通过面积转化进行解答.‎ ‎【解答】解:①∵矩形ABCD中,O为AC中点,‎ ‎∴OB=OC,‎ ‎∵∠COB=60°,‎ ‎∴△OBC是等边三角形,‎ ‎∴OB=BC,‎ ‎∵FO=FC,‎ ‎∴FB垂直平分OC,‎ 故①正确;‎ ‎②∵△BOC为等边三角形,FO=FC,‎ ‎∴BO⊥EF,BF⊥OC,‎ ‎∴∠CMB=∠EOB=90°,‎ 但BO≠BM,‎ 故②错误;‎ ‎③易知△ADE≌△CBF,∠1=∠2=∠3=30°,‎ ‎∴∠ADE=∠CBF=30°,∠BEO=60°,‎ ‎∴∠CDE=60°,∠DFE=∠BEO=60°,‎ ‎∴∠CDE=∠DFE,‎ ‎∴DE=EF,‎ 故③正确;‎ ‎④易知△AOE≌△COF,‎ ‎∴S△AOE=S△COF,‎ ‎∵S△COF=2S△CMF,‎ ‎∴S△AOE:S△BCM=2S△CMF:S△BCM=,‎ ‎∵∠FCO=30°,‎ ‎∴FM=,BM=CM,‎ ‎∴=,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴S△AOE:S△BCM=2:3,‎ 故④正确;‎ 所以其中正确结论的个数为3个;‎ 故选B ‎【点评】本题综合性比较强,既考查了矩形的性质、等腰三角形的性质,又考查了全等三角形的性质和判定,及线段垂直平分线的性质,内容虽多,但不复杂;看似一个选择题,其实相当于四个证明题,属于常考题型.‎ ‎9.(2016•雅安)如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ的最小值为(  )‎ A.2 B. C.2 D.3‎ ‎【分析】在Rt△ABE中,利用三角形相似可求得AE、DE的长,设A点关于BD的对称点A′,连接A′D,可证明△ADA′为等边三角形,当PQ⊥AD时,则PQ最小,所以当A′Q⊥AD时AP+PQ最小,从而可求得AP+PQ的最小值等于DE的长,可得出答案..‎ ‎【解答】解:‎ 设BE=x,则DE=3x,‎ ‎∵四边形ABCD为矩形,且AE⊥BD,‎ ‎∴△ABE∽△DAE,‎ ‎∴AE2=BE•DE,即AE2=3x2,‎ ‎∴AE=x,‎ 在Rt△ADE中,由勾股定理可得AD2=AE2+DE2,即62=(x)2+(3x)2,解得x=‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎,‎ ‎∴AE=3,DE=3,‎ 如图,设A点关于BD的对称点为A′,连接A′D,PA′,‎ 则A′A=2AE=6=AD,AD=A′D=6,‎ ‎∴△AA′D是等边三角形,‎ ‎∵PA=PA′,‎ ‎∴当A′、P、Q三点在一条线上时,A′P+PQ最小,‎ 又垂线段最短可知当PQ⊥AD时,A′P+PQ最小,‎ ‎∴AP+PQ=A′P+PQ=A′Q=DE=3,‎ 故选D.‎ ‎【点评】本题主要考查轴对称的应用,利用最小值的常规解法确定出A的对称点,从而确定出AP+PQ的最小值的位置是解题的关键,利用条件证明△A′DA是等边三角形,借助几何图形的性质可以减少复杂的计算.‎ ‎10.(2016•南宁)有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于(  )‎ A.1: B.1:‎2 ‎C.2:3 D.4:9‎ ‎【分析】设小正方形的边长为x,再根据相似的性质求出S1、S2与正方形面积的关系,然后进行计算即可得出答案.‎ ‎【解答】解:设小正方形的边长为x,根据图形可得:‎ ‎∵=,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴=,‎ ‎∴=,‎ ‎∴S1=S正方形ABCD,‎ ‎∴S1=x2,‎ ‎∵=,‎ ‎∴=,‎ ‎∴S2=S正方形ABCD,‎ ‎∴S2=x2,‎ ‎∴S1:S2=x2: x2=4:9;‎ 故选D.‎ ‎【点评】此题考查了正方形的性质,用到的知识点是正方形的性质、相似三角形的性质、正方形的面积公式,关键是根据题意求出S1、S2与正方形面积的关系.‎ ‎ ‎ ‎11.(2016•毕节市)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是(  )‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 A.3 B.‎4 ‎C.5 D.6‎ ‎【分析】根据折叠可得DH=EH,在直角△CEH中,设CH=x,则DH=EH=9﹣x,根据BE:EC=2:1可得CE=3,可以根据勾股定理列出方程,从而解出CH的长.‎ ‎【解答】解:设CH=x,则DH=EH=9﹣x,‎ ‎∵BE:EC=2:1,BC=9,‎ ‎∴CE=BC=3,‎ ‎∴在Rt△ECH中,EH2=EC2+CH2,‎ 即(9﹣x)2=32+x2,‎ 解得:x=4,‎ 即CH=4.‎ 故选(B).‎ ‎【点评】本题主要考查正方形的性质以及翻折变换,折叠问题其实质是轴对称变换.在直角三角形中,利用勾股定理列出方程进行求解是解决本题的关键.‎ ‎12.(2016•徐州)如图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是(  )‎ A.1或9 B.3或‎5 ‎C.4或6 D.3或6‎ ‎【分析】根据题意列方程,即可得到结论.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【解答】解:如图,‎ ‎∵若直线AB将它分成面积相等的两部分,‎ ‎∴(6+9+x)×9﹣x•(9﹣x)=×(62+92+x2)﹣6×3,‎ 解得x=3,或x=6,‎ 故选D.‎ ‎【点评】本题考查了正方形的性质,图形的面积的计算,准确分识别图形是解题的关键.‎ ‎13.(2016•陕西)如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有(  )‎ A.2对 B.3对 C.4对 D.5对 ‎【分析】可以判断△ABD≌△BCD,△MDO≌△M′BO,△NOD≌△N′OB,△MON≌△M′ON′.由此即可得出答案.‎ ‎【解答】解:∵四边形ABCD是正方形,‎ ‎∴AB=CD=CB=AD,∠A=∠C=∠ABC=∠ADC=90°,AD∥BC,‎ 在△ABD和△BCD中,‎ ‎,‎ ‎∴△ABD≌△BCD,‎ ‎∵AD∥BC,‎ ‎∴∠MDO=∠M′BO,‎ 在△MOD和△M′OB中,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎,‎ ‎∴△MDO≌△M′BO,同理可证△NOD≌△N′OB,∴△MON≌△M′ON′,‎ ‎∴全等三角形一共有4对.‎ 故选C.‎ ‎【点评】本题考查正方形的性质、全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定方法,属于基础题,中考常考题型.‎ ‎14.(2016•台湾)如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD上.若∠ECD=35°,∠AEF=15°,则∠B的度数为何?(  )‎ A.50 B.‎55 ‎C.70 D.75‎ ‎【分析】由平角的定义求出∠CED的度数,由三角形内角和定理求出∠D的度数,再由平行四边形的对角相等即可得出结果.‎ ‎【解答】解:∵四边形CEFG是正方形,‎ ‎∴∠CEF=90°,‎ ‎∵∠CED=180°﹣∠AEF﹣∠CEF=180°﹣15°﹣90°=75°,‎ ‎∴∠D=180°﹣∠CED﹣∠ECD=180°﹣75°﹣35°=70°,‎ ‎∵四边形ABCD为平行四边形,‎ ‎∴∠B=∠D=70°(平行四边形对角相等).‎ 故选C.‎ ‎【点评】本题考查了正方形的性质、平行四边形的性质、三角形内角和定理等知识;熟练掌握平行四边形和正方形的性质,由三角形内角和定理求出∠‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 D的度数是解决问题的关键.‎ ‎15.(2016•呼和浩特)如图,面积为24的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上.若BF=,则小正方形的周长为(  )‎ A. B. C. D.‎ ‎【分析】先利用勾股定理求出DF,再根据△BEF∽△CFD,得=求出EF即可解决问题.‎ ‎【解答】解:∵四边形ABCD是正方形,面积为24,‎ ‎∴BC=CD=2,∠B=∠C=90°,‎ ‎∵四边形EFGH是正方形,‎ ‎∴∠EFG=90°,‎ ‎∵∠EFB+∠DFC=90°,∠BEF+∠EFB=90°,‎ ‎∴∠BEF=∠DFC,∵∠EBF=∠C=90°,‎ ‎∴△BEF∽△CFD,‎ ‎∴=,‎ ‎∵BF=,CF=,DF==,‎ ‎∴=,‎ ‎∴EF=,‎ ‎∴正方形EFGH的周长为.‎ 故选C.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【点评】本题考查正方形的性质、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形,利用相似三角形的性质解决问题,属于中考常考题型.‎ ‎16.(2016•昆明)如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:‎ ‎①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,其中结论正确的有(  )‎ A.1个 B.2个 C.3个 D.4个 ‎【分析】①根据题意可知∠ACD=45°,则GF=FC,则EG=EF﹣GF=CD﹣FC=DF;‎ ‎②由SAS证明△EHF≌△DHC,得到∠HEF=∠HDC,从而∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=180°;‎ ‎③同②证明△EHF≌△DHC即可;‎ ‎④若=,则AE=2BE,可以证明△EGH≌△DFH,则∠EHG=∠DHF且EH=DH,则∠DHE=90°,△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,设HM=x,则DM=5x,DH=x,CD=6x,则S△DHC=×HM×CD=3x2,S△EDH=×DH2=13x2.‎ ‎【解答】解:①∵四边形ABCD为正方形,EF∥AD,‎ ‎∴EF=AD=CD,∠ACD=45°,∠GFC=90°,‎ ‎∴△CFG为等腰直角三角形,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴GF=FC,‎ ‎∵EG=EF﹣GF,DF=CD﹣FC,‎ ‎∴EG=DF,故①正确;‎ ‎②∵△CFG为等腰直角三角形,H为CG的中点,‎ ‎∴FH=CH,∠GFH=∠GFC=45°=∠HCD,‎ 在△EHF和△DHC中,,‎ ‎∴△EHF≌△DHC(SAS),‎ ‎∴∠HEF=∠HDC,‎ ‎∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=∠AEF+∠ADF=180°,故②正确;‎ ‎③∵△CFG为等腰直角三角形,H为CG的中点,‎ ‎∴FH=CH,∠GFH=∠GFC=45°=∠HCD,‎ 在△EHF和△DHC中,,‎ ‎∴△EHF≌△DHC(SAS),故③正确;‎ ‎④∵=,‎ ‎∴AE=2BE,‎ ‎∵△CFG为等腰直角三角形,H为CG的中点,‎ ‎∴FH=GH,∠FHG=90°,‎ ‎∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,‎ 在△EGH和△DFH中,,‎ ‎∴△EGH≌△DFH(SAS),‎ ‎∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,‎ ‎∴△EHD为等腰直角三角形,‎ 过H点作HM垂直于CD于M点,如图所示:‎ 设HM=x,则DM=5x,DH=x,CD=6x,‎ 则S△DHC=×HM×CD=3x2,S△EDH=×DH2=13x2,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴3S△EDH=13S△DHC,故④正确;‎ 故选:D.‎ ‎【点评】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、三角形面积的计算等知识;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.‎ 二.填空题(共14小题)‎ ‎17.(2016•内江)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=  .‎ ‎【分析】先根据菱形的性质得AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,再在Rt△OBC中利用勾股定理计算出BC=5,然后利用面积法计算OE的长.‎ ‎【解答】解:∵四边形ABCD为菱形,‎ ‎∴AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,‎ 在Rt△OBC中,∵OB=3,OC=4,‎ ‎∴BC==5,‎ ‎∵OE⊥BC,‎ ‎∴OE•BC=OB•OC,‎ ‎∴OE==.‎ 故答案为.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了勾股定理和三角形面积公式.‎ ‎18.(2016•扬州)如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为 24 .‎ ‎【分析】由菱形的性质可得出AC⊥BD,AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得出AD的长,结合菱形的周长公式即可得出结论.‎ ‎【解答】解:∵四边形ABCD为菱形,‎ ‎∴AC⊥BD,AB=BC=CD=DA,‎ ‎∴△AOD为直角三角形.‎ ‎∵OE=3,且点E为线段AD的中点,‎ ‎∴AD=2OE=6.‎ C菱形ABCD=4AD=4×6=24.‎ 故答案为:24.‎ ‎【点评】本题考查了菱形的性质以及直角三角形的性质,解题的关键是求出AD=6.本题属于基础题,难度不大,解决该题型题目时,根据菱形的性质找出对角线互相垂直,再通过直角三角形的性质找出菱形的一条变成是关键.‎ ‎19.(2016•盐城)如图,已知菱形ABCD的边长2,∠A=60°,点E、F分别在边AB、AD上,若将△AEF沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF=  .‎ ‎【分析】延长CD,过点F作FM⊥CD于点M,连接GB、BD,作FH⊥AE交于点H,由菱形的性质和已知条件得出∠MFD=30°,设MD=x,则DF=2x,FM=‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 x,得出MG=x+1,由勾股定理得出(x+1)2+(x)2=(2﹣2x)2,解方程得出DF=0.6,AF=1.4,求出AH=AF=0.7,FH=,证明△DCB是等边三角形,得出BG⊥CD,由勾股定理求出BG=,设BE=y,则GE=2﹣y,由勾股定理得出()2+y2=(2﹣y)2,解方程求出y=0.25,得出AE、EH,再由勾股定理求出EF即可.‎ ‎【解答】解:延长CD,过点F作FM⊥CD于点M,连接GB、BD,作FH⊥AE交于点H,如图所示:‎ ‎∵∠A=60°,四边形ABCD是菱形,‎ ‎∴∠MDF=60°,‎ ‎∴∠MFD=30°,‎ 设MD=x,则DF=2x,FM=x,‎ ‎∵DG=1,∴MG=x+1,‎ ‎∴(x+1)2+(x)2=(2﹣2x)2,‎ 解得:x=0.3,‎ ‎∴DF=0.6,AF=1.4,‎ ‎∴AH=AF=0.7,FH=AF•sin∠A=1.4×=,‎ ‎∵CD=BC,∠C=60°,‎ ‎∴△DCB是等边三角形,‎ ‎∵G是CD的中点,‎ ‎∴BG⊥CD,‎ ‎∵BC=2,GC=1,‎ ‎∴BG=,‎ 设BE=y,则GE=2﹣y,‎ ‎∴()2+y2=(2﹣y)2,‎ 解得:y=0.25,‎ ‎∴AE=1.75,‎ ‎∴EH=AE﹣AH=1.75﹣0.7=1.05,‎ ‎∴EF===.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 故答案为:.‎ ‎【点评】本题考查了菱形的性质、翻折变换的性质、勾股定理、等边三角形的判定与性质等知识;本题综合性强,难度较大,运用勾股定理得出方程是解决问题的关键.‎ ‎20.(2016•哈尔滨)如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为 3 .‎ ‎【分析】首先证明△ABC,△ADC都是等边三角形,再证明FG是菱形的高,根据2•S△ABC=BC•FG即可解决问题.‎ ‎【解答】解:∵四边形ABCD是菱形,∠BAD=120°,‎ ‎∴AB=BC=CD=AD,∠CAB=∠CAD=60°,‎ ‎∴△ABC,△ACD是等边三角形,‎ ‎∵EG⊥AC,‎ ‎∴∠AEG=∠AGE=30°,‎ ‎∵∠B=∠EGF=60°,‎ ‎∴∠AGF=90°,‎ ‎∴FG⊥BC,‎ ‎∴2•S△ABC=BC•FG,‎ ‎∴2××(6)2=6•FG,‎ ‎∴FG=3.‎ 故答案为3.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【点评】本题考查菱形的性质、等边三角形的判定和性质、翻折变换、菱形的面积等知识,记住菱形的面积=底×高=对角线乘积的一半,属于中考常考题型.‎ ‎21.(2016•巴中)如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E= 15 度.‎ ‎【分析】连接AC,由矩形性质可得∠E=∠DAE、BD=AC=CE,知∠E=∠CAE,而∠ADB=∠CAD=30°,可得∠E度数.‎ ‎【解答】解:连接AC,‎ ‎∵四边形ABCD是矩形,‎ ‎∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,‎ ‎∴∠E=∠DAE,‎ 又∵BD=CE,‎ ‎∴CE=CA,‎ ‎∴∠E=∠CAE,‎ ‎∵∠CAD=∠CAE+∠DAE,‎ ‎∴∠E+∠E=30°,即∠E=15°,‎ 故答案为:15.‎ ‎【点评】本题主要考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎22.(2016•包头)如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE= 22.5 度.‎ ‎【分析】首先证明△AEO是等腰直角三角形,求出∠OAB,∠OAE即可.‎ ‎【解答】解:∵四边形ABCD是矩形,‎ ‎∴AC=BD,OA=OC,OB=OD,‎ ‎∴OA=OB═OC,‎ ‎∴∠OAD=∠ODA,∠OAB=∠OBA,‎ ‎∴∠AOE=∠OAD+∠ODA=2∠OAD,‎ ‎∵∠EAC=2∠CAD,‎ ‎∴∠EAO=∠AOE,‎ ‎∵AE⊥BD,‎ ‎∴∠AEO=90°,‎ ‎∴∠AOE=45°,‎ ‎∴∠OAB=∠OBA==67.5°,‎ ‎∴∠BAE=∠OAB﹣∠OAE=22.5°.‎ 故答案为22.5°.‎ ‎【点评】本题考查矩形的性质、等腰直角三角形的性质等知识,解题的关键是发现△AEO是等腰直角三角形这个突破口,属于中考常考题型.‎ ‎23.(2016•黄冈)如图,在矩形ABCD中,点E、F分别在边CD、BC上,且DC=3DE=‎3a.将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP= 2a .‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【分析】作FM⊥AD于M,则MF=DC=‎3a,由矩形的性质得出∠C=∠D=90°.由折叠的性质得出PE=CE=‎2a=2DE,∠EPF=∠C=90°,求出∠DPE=30°,得出∠MPF=60°,在Rt△MPF中,由三角函数求出FP即可.‎ ‎【解答】解:作FM⊥AD于M,如图所示:‎ 则MF=DC=‎3a,‎ ‎∵四边形ABCD是矩形,‎ ‎∴∠C=∠D=90°.‎ ‎∵DC=3DE=‎3a,‎ ‎∴CE=‎2a,‎ 由折叠的性质得:PE=CE=‎2a=2DE,∠EPF=∠C=90°,‎ ‎∴∠DPE=30°,‎ ‎∴∠MPF=180°﹣90°﹣30°=60°,‎ 在Rt△MPF中,∵sin∠MPF=,‎ ‎∴FP===2a;‎ 故答案为:2a.‎ ‎【点评】本题考查了折叠的性质、矩形的性质、三角函数等知识;熟练掌握折叠和矩形的性质,求出∠DPE=30°是解决问题的关键.‎ ‎24.(2016•湖北襄阳)如图,正方形ABCD的边长为2,对角线AC、BD相交于点O,E是OC的中点,连接BE,过点A作AM⊥‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 BE于点M,交BD于点F,则FM的长为  .‎ ‎【分析】先根据ASA判定△AFO≌△BEO,并根据勾股定理求得BE的长,再判定△BFM∽△BEO,最后根据对应边成比例,列出比例式求解即可.‎ ‎【解答】解:∵正方形ABCD ‎∴AO=BO,∠AOF=∠BOE=90°‎ ‎∵AM⊥BE,∠AFO=∠BFM ‎∴∠FAO=∠EBO 在△AFO和△BEO中 ‎∴△AFO≌△BEO(ASA)‎ ‎∴FO=EO ‎∵正方形ABCD的边长为2,E是OC的中点 ‎∴FO=EO=1=BF,BO=2‎ ‎∴直角三角形BOE中,BE==‎ 由∠FBM=∠EBO,∠FMB=∠EOB,可得△BFM∽△BEO ‎∴,即 ‎∴FM=‎ 故答案为:‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【点评】本题主要考查了正方形,解决问题的关键的掌握全等三角形和相似三角形的判定与性质.解题时注意:正方形的对角线将正方形分成四个全等的等腰直角三角形.‎ ‎25.(2016•南京)如图,菱形ABCD的面积为‎120cm2,正方形AECF的面积为‎50cm2,则菱形的边长为 ‎13 cm.‎ ‎【分析】根据正方形的面积可用对角线进行计算解答即可.‎ ‎【解答】解:因为正方形AECF的面积为‎50cm2,‎ 所以AC=cm,‎ 因为菱形ABCD的面积为‎120cm2,‎ 所以BD=cm,‎ 所以菱形的边长=cm.‎ 故答案为:13.‎ ‎【点评】此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.‎ ‎26.(2016•聊城)如图,在平面直角坐标系中,边长为1的正方形OA1B‎1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B‎2C2,再以正方形OB1B‎2C2的对角线OB2为边作正方形OB2B‎3C3,以此类推…、则正方形OB2015B‎2016C2016的顶点B2016的坐标是 (21008,0) .‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【分析】首先求出B1、B2、B3、B4、B5、B6、B7、B8、B9的坐标,找出这些坐标的之间的规律,然后根据规律计算出点B2016的坐标.‎ ‎【解答】解:∵正方形OA1B‎1C1边长为1,‎ ‎∴OB1=,‎ ‎∵正方形OB1B‎2C2是正方形OA1B‎1C1的对角线OB1为边,‎ ‎∴OB2=2,‎ ‎∴B2点坐标为(0,2),‎ 同理可知OB3=2,‎ ‎∴B3点坐标为(﹣2,2),‎ 同理可知OB4=4,B4点坐标为(﹣4,0),‎ B5点坐标为(﹣4,﹣4),B6点坐标为(0,﹣8),‎ B7(8,﹣8),B8(16,0)‎ B9(16,16),B10(0,32),‎ 由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,‎ ‎∵2016÷8=252‎ ‎∴B2016的纵横坐标符号与点B8的相同,横坐标为正值,纵坐标是0,‎ ‎∴B2016的坐标为(21008,0).‎ 故答案为:(21008,0).‎ ‎【点评】本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍.‎ ‎27.(2016•安徽自主招生)如图,在平面内,四边形ABCD和BEFG均为正方形,则AG:DF:CE= 1::1 .‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【分析】连接BD、BF,可证明△ABG∽△DBF,可求得AG:DF,连接CE,可证明△ABG≌△CBE,可求得AG=CE,可求得答案.‎ ‎【解答】解:‎ 连接BD、BF和CE,‎ ‎∵四边形ABCD和BEFG均为正方形,‎ ‎∴==,且∠ABD=∠GBF=45°,‎ ‎∴∠ABG+∠GBD=∠GBD+∠DBF,‎ ‎∴∠ABG=∠GBD,‎ ‎∴△ABG∽△DBF,‎ ‎∴,‎ 又∴AB=BC,BG=BE,∠ABC=∠GBE=90°,‎ ‎∴∠AGB+∠GBC=∠GBC+∠CBE,‎ ‎∴∠AGB=∠CBE,‎ 在△ABG和△CBE中 ‎∴△ABG≌△CBE(SAS),‎ ‎∴AG=CE,‎ ‎∴AG:CE=1:1,‎ ‎∴AG:DF:CE=1::1,‎ 故答案为:1::1.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【点评】本题主要考查相似三角形和全等三角形的判定和性质,构造全等或相似三角形是解题的关键.‎ ‎28.(2016•湖北校级自主招生)如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,M为斜边AB上一动点,过M作MD⊥AC,过M作ME⊥CB于点E,则线段DE的最小值为  .‎ ‎【分析】连接CM,先证明四边形CDME是矩形,得出DE=CM,再由三角形的面积关系求出CM的最小值,即可得出结果.‎ ‎【解答】解:连接CM,如图所示:‎ ‎∵MD⊥AC,ME⊥CB,‎ ‎∴∠MDC=∠MEC=90°,‎ ‎∵∠C=90°,‎ ‎∴四边形CDME是矩形,‎ ‎∴DE=CM,‎ ‎∵∠C=90°,BC=3,AC=4,‎ ‎∴AB===5,‎ 当CM⊥AB时,CM最短,此时△ABC的面积=AB•CM=BC•AC,‎ ‎∴CM的最小值==,‎ ‎∴线段DE的最小值为;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 故答案为:.‎ ‎【点评】本题考查了矩形的判定与性质、勾股定理、直角三角形面积的计算方法;熟练掌握矩形的判定与性质,并能进行推理论证与计算是解决问题的关键.‎ ‎29.(2016•丹东)如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB延长线于点F,则EF的长为 6 .‎ ‎【分析】利用正方形的性质和勾股定理可得AC的长,由角平分线的性质和平行线的性质可得∠CAE=∠E,易得CE=CA,由FA⊥AE,可得∠FAC=∠F,易得CF=AC,可得EF的长.‎ ‎【解答】解:∵四边形ABCD为正方形,且边长为3,‎ ‎∴AC=3,‎ ‎∵AE平分∠CAD,‎ ‎∴∠CAE=∠DAE,‎ ‎∵AD∥CE,‎ ‎∴∠DAE=∠E,‎ ‎∴∠CAE=∠E,‎ ‎∴CE=CA=3,‎ ‎∵FA⊥AE,‎ ‎∴∠FAC+∠CAE=90°,∠F+∠E=90°,‎ ‎∴∠FAC=∠F,‎ ‎∴CF=AC=3,‎ ‎∴EF=CF+CE=3=6,‎ 故答案为:6.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【点评】本题主要考查了正方形的性质,角平分线的性质等,利用等角对等边是解答此题的关键.‎ ‎30.(2016•天津)如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于  .‎ ‎【分析】根据辅助线的性质得到∠ABD=∠CBD=45°,四边形MNPQ和AEFG均为正方形,推出△BEF与△BMN是等腰直角三角形,于是得到FE=BE=AE=AB,BM=MN=QM,同理DQ=MQ,即可得到结论.‎ ‎【解答】解:在正方形ABCD中,‎ ‎∵∠ABD=∠CBD=45°,‎ ‎∵四边形MNPQ和AEFG均为正方形,‎ ‎∴∠BEF=∠AEF=90°,∠BMN=∠QMN=90°,‎ ‎∴△BEF与△BMN是等腰直角三角形,‎ ‎∴FE=BE=AE=AB,BM=MN=QM 由莲山课件提供http://www.5ykj.com/ 资源全部免费

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料