由莲山课件提供http://www.5ykj.com/ 资源全部免费
2015-2016学年四川省达州市开江县八年级(下)期末数学试卷
一、选择题(下面每小题的四个选项中只有一项是正确的,请将正确答案的字母代号填在答题卡内,本题10小题,每小题3分,共30分)
1.下列图形中,是轴对称图形,但不是中心对称图形的是( )
A. B. C. D.
2.下列从左到右的变形,是因式分解的是( )
A.(a﹣b)(a+b)=a2﹣b2 B.x2+2x+3=x(x+2)+3
C.ab﹣a﹣b+1=(a﹣1)(b﹣1) D.m2+4m﹣4=(m﹣2)2
3.设a、b、c表示三种不同物体的质量,用天平称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是( )
A.c<b<a B.b<c<a C.c<a<b D.b<a<c
4.如图,在直角三角形ABC中,∠C=90°,AB=10,AC=8,点E、F分别为AC和AB的中点,则△AEF的周长等于( )
A.12 B.10 C.8 D.6
5.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是( )
A.20或16 B.20
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
C.16 D.以上答案均不对
6.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/小时,依据题意列方程正确的是( )
A. B. C. D.
7.已知四边形ABCD,有以下四个条件:①AB∥CD;②AB=CD;③BC∥AD;④BC=AD.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有( )
A.6种 B.5种 C.4种 D.3种
8.某工厂要招聘A、B两个工种的工人120人,A、B两个工种的工人的月工资分别为1500元和3000元,现要求B工种的人数不少于A工种人数的2倍,要使工厂每月所付的工资总额最少,那么工厂招聘A种工人的人数至多是( )人.
A.50 B.40 C.30 D.20
9.如图,在已知的△ABC中,按以下步骤作图:
①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;
②作直线MN交AB于点D,连接CD.
若CD=AC,∠ACB=120°,则∠A的度数为( )
A.60° B.50° C.40° D.不能确定
10.如图,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是( )
①∠DCF=∠BCD;②EF=CF;③∠DFE=3∠AEF;④S△BEC=2S△CEF.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.①②③ B.②③④ C.①②④ D.①③④
二、填空题(本题共6小题,每小题3分,共18分,请把最后答案直接填在题中横线上)
11.分解因式:3a2﹣12= .
12.已知分式的值是0,则m的值为 .
13.如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2= 度.
14.已知:在△ABC中,∠CAB=70°,在同一平面内将△ABC绕A点旋转到△AB′C′位置,且CC′∥AB,则∠BAB′的度数是 .
15.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为 .
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
16.观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x的方程(n为正整数)的根,你的答案是: .
三、解答题(72分,解答时应写出必要的文字说明、证明过程或演算步骤)(一)(本题2个小题,共17分)
17.解不等式组:,并把它的解集在数轴上表示出来.
18.解方程; =﹣1.
19.先化简,再求值:(﹣x﹣2)÷,请你从﹣2,0,1,2中选择一个自己喜欢的数进行计算.
(二)(本题2小题,共13分)
20.如图,∠AOB=60°,OP=12cm,OC=5cm,PC=PD,求OD的长.
21.某校为美化校园,计划对面积1800㎡的区域进行绿化,安排甲、乙两个工程队完成.已知加队每天完成绿化面积是乙队每天完成绿化面积的2倍,并且在独立完成面积为600㎡区域的绿化时,甲队比乙队少用6天.
(1)求甲、乙两队每天能完成绿化的面积分别是多少㎡?
(2)若学校每天需付给甲队的绿化费用为0.8万元,乙队为0.5万元,要使这次的绿化费用不超过16万元,要使这次的绿化总费用不超过16万元,需先让甲队工作一段时间,余下的由乙队完成,至少应安排甲队工作多少天?
(三)(本题2个小题,共14分)
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
22.已知:如图,在四边形ABCD中,DE⊥AC,BF⊥AC,垂足分别为E,F,DE=BF,∠ADB=∠CBD.
求证:四边形ABCD是平行四边形.
23.某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况下表所示,结合上述信息,解答下列问题:
造型花卉
甲
乙
A
80
40
B
50
70
(1)符合题意的搭配方案有几种?
(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用那种方案成本最低?最低成本为多少元?
(四)(本题2个小题,共16分)
24.阅读与应用:同学们:你们已经知道(a﹣b)2≥0,即a2﹣2ab+b2≥0.
∴a2+b2≥2ab(当且仅当a=b时取等号).
阅读1:若a、b为实数,且a>0,b>0,∵(﹣)2≥0,∴a﹣2+b≥0
∴a+b≥2(当且仅当a=b时取等号).
阅读2:若函数y=x+(m>0,x>0,m为常数),由阅读1结论可知:
x+≥2即x+≥2,
∴当x=,即x2=m,∴x=(m>0)时,函数y=x+的最小值为2.
阅读理解上述内容,解答下列问题:
问题1:若函数y=a﹣1+(a>1),则a= 时,函数y=a﹣1+(a>1)的最小值为 ;
问题2:已知一个矩形的面积为4,其中一边长为x,则另一边长为
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
,周长为2(x+),求当x= 时,周长的最小值为 ;
问题3:求代数式(m>﹣1)的最小值.
25.如图,在平行四边形ABCD中,BC=6cm,将△ABC沿对角线AC折叠,点B的对应点落在点E处,BC边的对应边CE与AD边交于点F,此时△CDF为等边三角形.
(1)求AB的长.
(2)求图中阴影部分的面积.
(五)(本题12分)
26.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.
(1)在图1中证明CE=CF;
(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;
(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
2015-2016学年四川省达州市开江县八年级(下)期末数学试卷
参考答案与试题解析
一、选择题(下面每小题的四个选项中只有一项是正确的,请将正确答案的字母代号填在答题卡内,本题10小题,每小题3分,共30分)
1.下列图形中,是轴对称图形,但不是中心对称图形的是( )
A. B. C. D.
【考点】中心对称图形;轴对称图形.
【分析】根据轴对称图形与中心对称图形的概念对各选项分析判断即可得解.
【解答】解:A、是轴对称图形,也是中心对称图形,故本选项错误;
B、不是轴对称图形,是中心对称图形,故本选项错误;
C、是轴对称图形,也是中心对称图形,故本选项错误;
D、是轴对称图形,但不是中心对称图形,故本选项正确.
故选D.
2.下列从左到右的变形,是因式分解的是( )
A.(a﹣b)(a+b)=a2﹣b2 B.x2+2x+3=x(x+2)+3
C.ab﹣a﹣b+1=(a﹣1)(b﹣1) D.m2+4m﹣4=(m﹣2)2
【考点】因式分解的意义.
【分析】利用因式分解的定义判断即可.
【解答】解:下列从左到右的变形,是因式分解的是ab﹣a﹣b+1=(ab﹣a)﹣(b﹣1)=a(b﹣1)﹣(b﹣1)=(a﹣1)(b﹣1),
故选C
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
3.设a、b、c表示三种不同物体的质量,用天平称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是( )
A.c<b<a B.b<c<a C.c<a<b D.b<a<c
【考点】不等式的性质;等式的性质.
【分析】观察图形可知:b=2c;a>b.
【解答】解:依题意得 b=2c;a>b.
∴a>b>c.
故选A.
4.如图,在直角三角形ABC中,∠C=90°,AB=10,AC=8,点E、F分别为AC和AB的中点,则△AEF的周长等于( )
A.12 B.10 C.8 D.6
【考点】三角形中位线定理.
【分析】在直角△ACB中利用勾股定理求得BC的长,则△ACB的周长即可求得,然后根据EF是△ACB的中位线得到△AEF∽△ACB,利用相似三角形的性质即可求解.
【解答】解:在直角△ABC中,BC===6.
则△ABC的周长是10+8+6=24.
∵E、F分别为AC和AB的中点,即EF是△ABC的中位线,
∴EF∥BC,
∴△AEF∽△ACB,相似比是1:2,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴=,
∴△AEF的周长=×24=12.
故选A.
5.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是( )
A.20或16 B.20
C.16 D.以上答案均不对
【考点】等腰三角形的性质;非负数的性质:绝对值;非负数的性质:算术平方根;三角形三边关系.
【分析】根据非负数的意义列出关于x、y的方程并求出x、y的值,再根据x是腰长和底边长两种情况讨论求解.
【解答】解:根据题意得
,
解得,
(1)若4是腰长,则三角形的三边长为:4、4、8,
不能组成三角形;
(2)若4是底边长,则三角形的三边长为:4、8、8,
能组成三角形,周长为4+8+8=20.
故选B.
6.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/小时,依据题意列方程正确的是( )
A. B. C. D.
【考点】由实际问题抽象出分式方程.
【分析】题中等量关系:甲车行驶30千米与乙车行驶40千米所用时间相同,据此列出关系式.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:设甲车的速度为x千米/时,则乙车的速度为(x+15)千米/时,
根据题意,得
=.
故选C.
7.已知四边形ABCD,有以下四个条件:①AB∥CD;②AB=CD;③BC∥AD;④BC=AD.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有( )
A.6种 B.5种 C.4种 D.3种
【考点】平行四边形的判定.
【分析】根据平行四边形的判定方法即可找到所有组合方式:(1)两组对边平行①③;(2)两组对边相等②④;(3)一组对边平行且相等①②或③④,所以有四种组合.
【解答】解:依题意得有四种组合方式:
(1)①③,利用两组对边平行的四边形是平行四边形判定;
(2)②④,利用两组对边相等的四边形是平行四边形判定;
(3)①②或③④,利用一组对边平行且相等的四边形是平行四边形判定.
故选:C.
8.某工厂要招聘A、B两个工种的工人120人,A、B两个工种的工人的月工资分别为1500元和3000元,现要求B工种的人数不少于A工种人数的2倍,要使工厂每月所付的工资总额最少,那么工厂招聘A种工人的人数至多是( )人.
A.50 B.40 C.30 D.20
【考点】一元一次不等式的应用.
【分析】题中不等关系是:A,B两种工种的工人共120人,B工种的人数不少于A工种人数的2倍,据此列出不等式组并解答,求出总工资最少时A工种的工人数.
【解答】
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
解:设每月所支付的工资为y元,招聘A工种工人x人,则招聘B工种工人人,根据题意得
y=1500x+3000=﹣1500x+360 000,
由题意得120﹣x≥2x,
解得:x≤40,
y=﹣1500x+360 000中的y随x的增大而减少,
所以当x=40时,y取得最小值300000.
即当招聘A工种工人40人时,可使每月所付工资最少.
故选:B.
9.如图,在已知的△ABC中,按以下步骤作图:
①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;
②作直线MN交AB于点D,连接CD.
若CD=AC,∠ACB=120°,则∠A的度数为( )
A.60° B.50° C.40° D.不能确定
【考点】作图—基本作图;线段垂直平分线的性质.
【分析】先根据△ABC中,∠ACB=120°求出∠A+∠B的度数,再由题意得出MN是线段BC的垂直平分线得出BD=CD,故可得出∠B=∠BCD.由三角形外角的性质得出∠CDA=∠B+∠BCD=2∠B,根据CD=AC得出∠CDA=∠A=2∠B,再由三角形内角和定理即可得出结论.
【解答】解:∵△ABC中,∠ACB=120°,
∴∠A+∠B=60°.
∵由题意得出MN是线段BC的垂直平分线,
∴BD=CD,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴∠B=∠BCD,
∴∠CDA=∠B+∠BCD=2∠B.
∵CD=AC,
∴∠CDA=∠A=2∠B,
∴3∠B=60°,解得∠B=20°,
∴∠A=2∠B=40°.
故选C.
10.如图,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是( )
①∠DCF=∠BCD;②EF=CF;③∠DFE=3∠AEF;④S△BEC=2S△CEF.
A.①②③ B.②③④ C.①②④ D.①③④
【考点】四边形综合题.
【分析】①根据平行四边形的性质和平行线的性质解答即可;
②延长EF,交CD延长线于M,证明△AEF≌△DMF,得到EF=FM,根据直角三角形斜边上的中线等于斜边的一半解答;
③设∠FEC=x,用x分别表示出∠DFE和∠AEF,比较即可;
④根据EF=FM,得到S△EFC=S△CFM,根据MC>BE,得到S△BEC<2S△EFC.
【解答】解:①∵F是AD的中点,
∴AF=FD,
∵在▱ABCD中,AD=2AB,
∴AF=FD=CD,
∴∠DFC=∠DCF,
∵AD∥BC,
∴∠DFC=∠FCB,
∴∠DCF=∠BCF,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴∠DCF=∠BCD,故此选项正确;
②如图1,延长EF,交CD延长线于M,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠A=∠MDF,
∵F为AD中点,
∴AF=FD,
在△AEF和△DFM中,
,
∴△AEF≌△DMF(ASA),
∴FE=MF,∠AEF=∠M,
∵CE⊥AB,
∴∠AEC=90°,
∴∠AEC=∠ECD=90°,
∵FM=EF,
∴FC=FE,故②正确;
③设∠FEC=x,则∠FCE=x,
∴∠DCF=∠DFC=90°﹣x,
∴∠EFC=180°﹣2x,
∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,
∵∠AEF=90°﹣x,
∴∠DFE=3∠AEF,故此选项正确;
④∵EF=FM,
∴S△EFC=S△CFM,
∵MC>BE,
∴S△BEC<2S△EFC
故S△BEC=2S△CEF错误,
故选:A.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
二、填空题(本题共6小题,每小题3分,共18分,请把最后答案直接填在题中横线上)
11.分解因式:3a2﹣12= 3(a+2)(a﹣2) .
【考点】提公因式法与公式法的综合运用.
【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.
【解答】解:3a2﹣12=3(a+2)(a﹣2).
12.已知分式的值是0,则m的值为 3 .
【考点】分式的值为零的条件.
【分析】直接利用分式的值为0,则其分子为0,且分母不为0,进而得出答案.
【解答】解:∵分式的值是0,
∴m2﹣9=0,且m+3≠0,
解得:m=3.
故答案为:3.
13.如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2= 240 度.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【考点】多边形内角与外角.
【分析】利用四边形的内角和得到∠B+∠C+∠D的度数,进而让五边形的内角和减去∠B+∠C+∠D的度数即为所求的度数.
【解答】解:∵四边形的内角和为(4﹣2)×180°=360°,
∴∠B+∠C+∠D=360°﹣60°=300°,
∵五边形的内角和为(5﹣2)×180°=540°,
∴∠1+∠2=540°﹣300°=240°,
故答案为:240.
14.已知:在△ABC中,∠CAB=70°,在同一平面内将△ABC绕A点旋转到△AB′C′位置,且CC′∥AB,则∠BAB′的度数是 40° .
【考点】旋转的性质.
【分析】旋转中心为点A,B与B′,C与C′分别是对应点,根据旋转的性质可知,旋转角∠BAB′=∠CAC′,AC=AC′,再利用平行线的性质得∠C′CA=∠CAB,把问题转化到等腰△ACC′中,根据内角和定理求∠CAC′,即可求出∠BAB′的度数.
【解答】解:∵CC′∥AB,∠CAB=70°,
∴∠C′CA=∠CAB=70°,
又∵C、C′为对应点,点A为旋转中心,
∴AC=AC′,即△ACC′为等腰三角形,
∴∠BAB′=∠CAC′=180°﹣2∠C′CA=40°.
故填:40°.
15.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为 ﹣2<x<﹣1 .
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【考点】一次函数与一元一次不等式.
【分析】由图象得到直线y=kx+b与直线y=4x+2的交点A的坐标(﹣1,﹣2)及直线y=kx+b与x轴的交点坐标,观察直线y=4x+2落在直线y=kx+b的下方且直线y=kx+b落在x轴下方的部分对应的x的取值即为所求.
【解答】解:∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),
∴直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),直线y=kx+b与x轴的交点坐标为B(﹣2,0),
又∵当x<﹣1时,4x+2<kx+b,
当x>﹣2时,kx+b<0,
∴不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.
故答案为:﹣2<x<﹣1.
16.观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x的方程(n为正整数)的根,你的答案是: x=n+3或x=n+4 .
【考点】分式方程的解.
【分析】首先求得分式方程①②③的解,即可得规律:方程x+=a+b的根为:x=a或x=b,然后将x+=2n+4化为(x﹣3)+=n+(n+1),利用规律求解即可求得答案.
【解答】解:∵由①得,方程的根为:x=1或x=2,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由②得,方程的根为:x=2或x=3,
由③得,方程的根为:x=3或x=4,
∴方程x+=a+b的根为:x=a或x=b,
∴x+=2n+4可化为(x﹣3)+=n+(n+1),
∴此方程的根为:x﹣3=n或x﹣3=n+1,
即x=n+3或x=n+4.
故答案为:x=n+3或x=n+4.
三、解答题(72分,解答时应写出必要的文字说明、证明过程或演算步骤)(一)(本题2个小题,共17分)
17.解不等式组:,并把它的解集在数轴上表示出来.
【考点】解一元一次不等式组;在数轴上表示不等式的解集.
【分析】首先分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可.
【解答】解:,
解①得:x≥﹣1,
解②得:x<4,
不等式组的解集为:﹣1≤x<4,
在数轴上表示:
.
18.解方程; =﹣1.
【考点】解分式方程.
【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:去分母得:1+x=﹣1﹣x+2,
解得:x=0,
经检验x=0是分式方程的解.
19.先化简,再求值:(﹣x﹣2)÷,请你从﹣2,0,1,2中选择一个自己喜欢的数进行计算.
【考点】分式的化简求值.
【分析】先算括号里面的,再算除法,最后选取合适的x的值代入进行计算即可.
【解答】解:原式=•
=•
=,
当x=1时,原式=﹣3.
(二)(本题2小题,共13分)
20.如图,∠AOB=60°,OP=12cm,OC=5cm,PC=PD,求OD的长.
【考点】含30度角的直角三角形;等腰三角形的性质.
【分析】首先过点P作PE⊥OB于点E,利用直角三角形中30°所对边等于斜边的一半得出OE的长,再利用等腰三角形的性质求出ED的长.
【解答】解:过点P作PE⊥OB于点E,
∵∠AOB=60°,PE⊥OB,12cm,
∴OE=OP=6cm,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵OC=5cm,PC=PD,
∴CE=DE=1cm,
∴OD=7.
21.某校为美化校园,计划对面积1800㎡的区域进行绿化,安排甲、乙两个工程队完成.已知加队每天完成绿化面积是乙队每天完成绿化面积的2倍,并且在独立完成面积为600㎡区域的绿化时,甲队比乙队少用6天.
(1)求甲、乙两队每天能完成绿化的面积分别是多少㎡?
(2)若学校每天需付给甲队的绿化费用为0.8万元,乙队为0.5万元,要使这次的绿化费用不超过16万元,要使这次的绿化总费用不超过16万元,需先让甲队工作一段时间,余下的由乙队完成,至少应安排甲队工作多少天?
【考点】分式方程的应用;一元一次不等式的应用.
【分析】(1)设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为1800m2区域的绿化时,甲队比乙队少用6天,列出方程,求解即可;
(2)设应安排甲队工作a天,根据这次的绿化总费用不超过16万元,列出不等式,求解即可.
【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:,
解得:x=50,
经检验x=50是原方程的解,
则甲工程队每天能完成绿化的面积是50×2=100(m2),
答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;
(2)设应安排甲队工作a天,根据题意得:
0.8a+×0.5≤16,
解得:a≥10,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
答:至少应安排甲队工作10天.
(三)(本题2个小题,共14分)
22.已知:如图,在四边形ABCD中,DE⊥AC,BF⊥AC,垂足分别为E,F,DE=BF,∠ADB=∠CBD.
求证:四边形ABCD是平行四边形.
【考点】平行四边形的判定.
【分析】首先利用平行线的性质与判定方法得出∠DAE=∠BCF,进而利用AAS得出△ADE≌△CBF,即可得出ADBC,即可得出答案.
【解答】证明:∵∠ADB=∠CBD,
∴AD∥BC,
∴∠DAE=∠BCF,
在△ADE和△CBF中
∵,
∴△ADE≌△CBF(AAS),
∴AD=BC,
∴四边形ABCD是平行四边形.
23.某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况下表所示,结合上述信息,解答下列问题:
造型花卉
甲
乙
A
80
40
B
50
70
(1)符合题意的搭配方案有几种?
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用那种方案成本最低?最低成本为多少元?
【考点】一元一次不等式组的应用.
【分析】(1)设需要搭配x个A种造型,则需要搭配B种造型(60﹣x)个,根据“4200盆甲种花卉”“3090盆乙种花卉”列不等式求解,取整数值即可.
(2)计算出每种方案的花费,然后即可判断出答案.
【解答】解:(1)设需要搭配x个A种造型,则需要搭配B种造型(60﹣x)个,
则有,
解得37≤x≤40,
所以x=37或38或39或40.
第一种方案:A种造型37个,B种造型23个;
第二种方案:A种造型38个,B种造型22个;
第三种方案:A种造型39个,B种造型21个.
第四种方案:A种造型40个,B种造型20个.
(2)分别计算四种方案的成本为:
①37×1000+23×1500=71500元,
②38×1000+22×1500=71000元,
③39×1000+21×1500=70500元,
④40×1000+20×1500=70000元.
通过比较可知第④种方案成本最低.
答:选择第四种方案成本最低,最低为70000元.
(四)(本题2个小题,共16分)
24.阅读与应用:同学们:你们已经知道(a﹣b)2≥0,即a2﹣2ab+b2≥0.
∴a2+b2≥2ab(当且仅当a=b时取等号).
阅读1:若a、b为实数,且a>0,b>0,∵(﹣)2≥0,∴a﹣2+b≥0
∴a+b≥2(当且仅当a=b时取等号).
阅读2:若函数y=x+(m>0,x>0,m为常数),由阅读1结论可知:
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
x+≥2即x+≥2,
∴当x=,即x2=m,∴x=(m>0)时,函数y=x+的最小值为2.
阅读理解上述内容,解答下列问题:
问题1:若函数y=a﹣1+(a>1),则a= 4 时,函数y=a﹣1+(a>1)的最小值为 6 ;
问题2:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为2(x+),求当x= 2 时,周长的最小值为 8 ;
问题3:求代数式(m>﹣1)的最小值.
【考点】反比例函数综合题.
【分析】(1)由阅读2得到a﹣1=时,函数y=a﹣1+(a>1)取最小值;
(2)同(1)方法x=2时周长取到最小值;
(3)先将处理成m+1+,同(1)的方法得出结论;
【解答】解:问题1,由阅读2知,a﹣1=时,
即:a=4时,函数y=a﹣1+(a>1)的最小值是2=6,
答案为4,6;
问题2,由阅读2知,x==2时,
周长为2(x+)的最小值是2×2=8,
故答案为2,8;
(3)===m+1+,
∴当m+1=时,即m=1时,(m>﹣1)最小值是2=4.
25.如图,在平行四边形ABCD中,BC=6cm,将△ABC沿对角线AC折叠,点B的对应点落在点E处,BC边的对应边CE与AD边交于点F,此时△CDF为等边三角形.
(1)求AB的长.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)求图中阴影部分的面积.
【考点】翻折变换(折叠问题);平行四边形的性质.
【分析】(1)首先根据等边三角形的性质可得DF=DC=FC,∠D=60°,根据折叠的性质,∠BCA=∠ECA,再利用平行四边形的性质证明∠DAC=30°,∠ACD=90°,利用直角三角形30°角所对的边等于斜边的一半可得CD长,进而可得AB的长;
(2)利用三角函数值计算出AC,然后根据三角形的中线平分三角形的面积可得S△ACF=S△ACD,进而可得答案.
【解答】解:(1)∵△CDF为等边三角形,
∴DF=DC=FC,∠D=60°,
根据折叠的性质,∠BCA=∠ECA,
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC=6cm,AB=CD,
∴∠FAC=∠BCA,
∴∠FAC=∠FCA,
∴FA=FC,
∴∠DAC=30°,
∴∠ACD=90°,
∴CD=AD=3cm,
∵AB=3cm;
(2)∵CD=3cm,∠ACD=90°,∠DAC=30°,
∴AC=3cm,
∴S△ACF=S△ACD=×AC•CD=×3×3=(cm2).
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(五)(本题12分)
26.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.
(1)在图1中证明CE=CF;
(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;
(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.
【考点】平行四边形的判定与性质;全等三角形的判定与性质;等边三角形的判定与性质;菱形的判定与性质.
【分析】(1)根据AF平分∠BAD,可得∠BAF=∠DAF,利用四边形ABCD是平行四边形,求证∠CEF=∠F即可.
(2)根据∠ABC=90°,G是EF的中点可直接求得.
(3)分别连接GB、GC,求证四边形CEGF是平行四边形,再求证△ECG是等边三角形.
由AD∥BC及AF平分∠BAD可得∠BAE=∠AEB,求证△BEG≌△DCG,然后即可求得答案
【解答】(1)证明:如图1,
∵AF平分∠BAD,
∴∠BAF=∠DAF,
∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴∠DAF=∠CEF,∠BAF=∠F,
∴∠CEF=∠F.
∴CE=CF.
(2)解:连接GC、BG,
∵四边形ABCD为平行四边形,∠ABC=90°,
∴四边形ABCD为矩形,
∵AF平分∠BAD,
∴∠DAF=∠BAF=45°,
∵∠DCB=90°,DF∥AB,
∴∠DFA=45°,∠ECF=90°
∴△ECF为等腰直角三角形,
∵G为EF中点,
∴EG=CG=FG,CG⊥EF,
∵△ABE为等腰直角三角形,AB=DC,
∴BE=DC,
∵∠CEF=∠GCF=45°,
∴∠BEG=∠DCG=135°
在△BEG与△DCG中,
∵,
∴△BEG≌△DCG,
∴BG=DG,
∵CG⊥EF,
∴∠DGC+∠DGA=90°,
又∵∠DGC=∠BGA,
∴∠BGA+∠DGA=90°,
∴△DGB为等腰直角三角形,
∴∠BDG=45°.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(3)解:延长AB、FG交于H,连接HD.
∵AD∥GF,AB∥DF,
∴四边形AHFD为平行四边形
∵∠ABC=120°,AF平分∠BAD
∴∠DAF=30°,∠ADC=120°,∠DFA=30°
∴△DAF为等腰三角形
∴AD=DF,
∴CE=CF,
∴平行四边形AHFD为菱形
∴△ADH,△DHF为全等的等边三角形
∴DH=DF,∠BHD=∠GFD=60°
∵FG=CE,CE=CF,CF=BH,
∴BH=GF
在△BHD与△GFD中,
∵,
∴△BHD≌△GFD,
∴∠BDH=∠GDF
∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
2017年2月21日
由莲山课件提供http://www.5ykj.com/ 资源全部免费