由莲山课件提供http://www.5ykj.com/ 资源全部免费
2016-2017学年广东省江门市新会区八年级(上)期末数学试卷
一、选择题(本题共10小题,每小题3分,共30分)
1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )
A. B. C. D.
2.若分式有意义,则x的取值范围是( )
A.x≠0 B. C. D.
3.下列运用平方差公式计算,错误的是( )
A.(a+b)(a﹣b)=a2﹣b2 B.(x+1)(x﹣1)=x2﹣1
C.(2x+1)(2x﹣1)=2x2﹣1 D.(﹣3x+2)(﹣3x﹣2)=9x2﹣4
4.一个长方形的面积为x2﹣2xy+x,长是x,则这个长方形的宽是( )
A.x﹣2y B.x+2y C.x﹣2y﹣1 D.x﹣2y+1
5.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是( )
A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN
6.给出下列计算,其中正确的是( )
A.a5+a5=a10 B.(2a2)3=6a6 C.a8÷a2=a4 D.(a3)4=a12
7.下列长度的三线段,能组成等腰三角形的是( )
A.1,1,2 B.2,2,5 C.3,3,5 D.3,4,5
8.如果一个多边形的每一个外角都等于45°,则这个多边形的边数为( )
A.3 B.4 C.5 D.8
9.化简的结果为( )
A.﹣1 B.1 C. D.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
10.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( )
A.15° B.25° C.30° D.10°
二、填空题(本题共6小题,每小题4分,共24分)
11.若分式的值为0,则实数x的值为 .
12.若3x=8,3y=4,则3x﹣y的值是 .
13.如图,已知△ABC≌△DCB,∠BDC=35°,∠DBC=50°,则∠ABD= .
14.分解因式:a2﹣4b2= .
15.如图,已知△ABC,BC=10,BC边的垂直平分线交AB,BC于点E、D.若△ACE的周长为12,则△ABC的周长为 .
16.一个正方形的边长增加了2cm,面积相应增加了32cm2,则这个正方形的边长为 cm.
三、解答题(本题共3小题,每小题6分,共18分)
17.分解因式:a3﹣4a2+4a.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
18.计算: •+(3x+1)
19.作图题:(不要求写作法)如图,△ABC在平面直角坐标系中,其中,点A,B,C的坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).
(1)作△ABC关于y轴对称的△A1B1C1,其中,点A、B、C的对应点分别为A1、B1、C1;
(2)写出点A1、B1、C1的坐标.
四、解答题(本题共3小题,每小题7分,共21分)
20.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.
(1)求∠BEC的度数.
(2)若CE=5,求BC的长.
21.如图,已知△ABC为等边三角形,D为BC延长线上的一点,CE平分∠ACD,
CE=BD,求证:
(1)△ABD≌△ACE;
(2)△ADE为等边三角形.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
22.已知(x+y)2=25,xy=,求x﹣y的值.
五、解答题(本题共3小题,每小题9分,共27分)
23.在争创全国卫生城市的活动中,我区“义工队”义务清运一堆重达100吨的垃圾,清运了25吨后因附近居民主动参与到义务劳动中,使清运的速度比原来提高了一倍,前后共用5小时就完成清运,请你求出义工队原计划每小时清运多少吨垃圾?
24.已知:如图,∠B=90°,AB∥DF,AB=4cm,BD=10cm,点C是线段BD上一动点,点E是直线DF上一动点,且始终保持AC⊥CE.
(1)如图1试说明:∠ACB=∠CED.
(2)若AC=CE,试求DE的长.
25.在△ABC中,AB=AC.
(1)如图1,如果∠BAD=30°,AD是BC上的高,AD=AE,则∠EDC= .
(2)如图2,如果∠BAD=40°,AD是BC上的高,AD=AE,则∠EDC= .
(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?并给予证明.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
2016-2017学年广东省江门市新会区八年级(上)期末数学试卷
参考答案与试题解析
一、选择题(本题共10小题,每小题3分,共30分)
1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )
A. B. C. D.
【考点】轴对称图形.
【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.
【解答】解:A、是轴对称图形,故A符合题意;
B、不是轴对称图形,故B不符合题意;
C、不是轴对称图形,故C不符合题意;
D、不是轴对称图形,故D不符合题意.
故选:A.
2.若分式有意义,则x的取值范围是( )
A.x≠0 B. C. D.
【考点】分式有意义的条件.
【分析】根据分式有意义的条件可得1﹣2x≠0,再解即可.
【解答】解:由题意得:1﹣2x≠0,
解得:x≠,
故选:B.
3.下列运用平方差公式计算,错误的是( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.(a+b)(a﹣b)=a2﹣b2 B.(x+1)(x﹣1)=x2﹣1
C.(2x+1)(2x﹣1)=2x2﹣1 D.(﹣3x+2)(﹣3x﹣2)=9x2﹣4
【考点】平方差公式.
【分析】根据两数和乘以这两个数的差,等于这两个数的平方差,可得答案.
【解答】解:(2x+1)(2x﹣1)=(2x)2﹣1,故C错误.
故选:C.
4.一个长方形的面积为x2﹣2xy+x,长是x,则这个长方形的宽是( )
A.x﹣2y B.x+2y C.x﹣2y﹣1 D.x﹣2y+1
【考点】整式的除法.
【分析】由长方形面积公式知,求长方形的宽,则由面积除以它的长即得.
【解答】解:(x2﹣2xy+x)÷x
=x2÷x﹣2xy÷x+x÷x
=x﹣2y+1.
故选:D.
5.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是( )
A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN
【考点】全等三角形的判定.
【分析】根据普通三角形全等的判定定理,有AAS、SSS、ASA、SAS四种.逐条验证.
【解答】解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;
B、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故B选项符合题意;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C选项不符合题意;
D、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意.
故选:B.
6.给出下列计算,其中正确的是( )
A.a5+a5=a10 B.(2a2)3=6a6 C.a8÷a2=a4 D.(a3)4=a12
【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方.
【分析】根据合并同类项系数相加字母及指数不变,积的乘方等于乘方的积,同底数幂的除法底数不变指数相减,幂的乘方底数不变指数相乘,可得答案.
【解答】解:A、合并同类项系数相加字母及指数不变,故A错误;
B、积的乘方等于乘方的积,故B错误;
C、同底数幂的除法底数不变指数相减,故C错误;
D、幂的乘方底数不变指数相乘,故D正确;
故选:D.
7.下列长度的三线段,能组成等腰三角形的是( )
A.1,1,2 B.2,2,5 C.3,3,5 D.3,4,5
【考点】等腰三角形的判定;三角形三边关系.
【分析】根据三角形三边关系以及等腰三角形的判定分别分析得出即可.
【解答】解:A、∵1+1=2,无法构成三角形,故此选项错误;
B、∵2+2<5,无法构成三角形,故此选项错误;
C、∵3+3>5,3=3,故组成等腰三角形,此选项正确;
D、∵3,4,5没有相等的边,不是等腰三角形,故此选项错误.
故选:C.
8.如果一个多边形的每一个外角都等于45°,则这个多边形的边数为( )
A.3 B.4 C.5 D.8
【考点】多边形内角与外角;多边形.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【分析】根据多边形的外角和是360度即可求得外角的个数,即多边形的边数.
【解答】解:多边形的边数是: =8,
故选D.
9.化简的结果为( )
A.﹣1 B.1 C. D.
【考点】分式的加减法.
【分析】先把分式进行通分,把异分母分式化为同分母分式,再把分子相加,即可求出答案.
【解答】解:
=﹣
=
=1;
故选B.
10.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( )
A.15° B.25° C.30° D.10°
【考点】三角形的外角性质.
【分析】先由三角形外角的性质求出∠BDF的度数,根据三角形内角和定理即可得出结论.
【解答】解:∵Rt△CDE中,∠C=90°,∠E=30°,
∴∠BDF=∠C+∠E=90°+30°=120°,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵△BDF中,∠B=45°,∠BDF=120°,
∴∠BFD=180°﹣45°﹣120°=15°.
故选A.
二、填空题(本题共6小题,每小题4分,共24分)
11.若分式的值为0,则实数x的值为 1 .
【考点】分式的值为零的条件.
【分析】分式的值等于零:分子等于零,且分母不等于零.
【解答】解:由题意,得
x2﹣1=0,且x+1≠0,
解得,x=1.
故填:1.
12.若3x=8,3y=4,则3x﹣y的值是 2 .
【考点】同底数幂的除法.
【分析】根据同底数幂的除法,底数不变指数相减,可得答案.
【解答】解:3x﹣y=3x÷3y=8÷4=2,
故答案为:2.
13.如图,已知△ABC≌△DCB,∠BDC=35°,∠DBC=50°,则∠ABD= 45° .
【考点】全等三角形的性质.
【分析】根据三角形的内角和等于180°求出∠BCD,再根据全等三角形对应角相等可得∠ABC=∠BCD,然后列式进行计算即可得解.
【解答】解:∵∠BDC=35°,∠DBC=50°,
∴∠BCD=180°﹣∠BDC﹣∠DBC=180°﹣35°﹣50°=95°,
∵△ABC≌△DCB,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴∠ABC=∠BCD=95°,
∴∠ABD=∠ABC﹣∠DBC=95°﹣50°=45°.
故答案为:45°.
14.分解因式:a2﹣4b2= (a+2b)(a﹣2b) .
【考点】因式分解-运用公式法.
【分析】直接用平方差公式进行分解.平方差公式:a2﹣b2=(a+b)(a﹣b).
【解答】解:a2﹣4b2=(a+2b)(a﹣2b).
15.如图,已知△ABC,BC=10,BC边的垂直平分线交AB,BC于点E、D.若△ACE的周长为12,则△ABC的周长为 22 .
【考点】线段垂直平分线的性质.
【分析】由BC边的垂直平分线交AB,根据线段垂直平分线的性质,可得BE=CE,又由△ACE的周长为12,即可得AB+AC=12,继而求得答案.
【解答】解:∵BC边的垂直平分线交AB,
∴BE=CE,
∵△ACE的周长为12,
∴AC+AE+CE=AC+AE+BE=AC+AB=12,
∵BC=10,
∴△ABC的周长为:AB+AC+BC=22.
故答案为:22.
16.一个正方形的边长增加了2cm,面积相应增加了32cm2,则这个正方形的边长为 7 cm.
【考点】完全平方公式的几何背景.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【分析】设正方形的边长是xcm,根据面积相应地增加了32cm2,即可列方程求解.
【解答】解:设正方形的边长是xcm,根据题意得:(x+2)2﹣x2=32,
解得:x=7.
故答案为:7.
三、解答题(本题共3小题,每小题6分,共18分)
17.分解因式:a3﹣4a2+4a.
【考点】提公因式法与公式法的综合运用.
【分析】原式提取公因式,再利用完全平方公式分解即可.
【解答】解:原式=a(a2﹣4a+4)=a(a﹣2)2.
18.计算: •+(3x+1)
【考点】分式的混合运算.
【分析】结合分式混合运算的运算法则进行求解即可.
【解答】解: •+(3x+1)
=•+(3x+1)
=x(x﹣1)+(3x+1)
=x2﹣x+3x+1
=x2+2x+1.
19.作图题:(不要求写作法)如图,△ABC在平面直角坐标系中,其中,点A,B,C的坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).
(1)作△ABC关于y轴对称的△A1B1C1,其中,点A、B、C的对应点分别为A1、B1、C1;
(2)写出点A1、B1、C1的坐标.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【考点】作图-轴对称变换.
【分析】(1)由已知点出发向所给直线作垂线,并确定垂足;直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;连接这些对称点,就得到原图形的轴对称图形;
(2)根据三角形各顶点的位置,写出坐标即可.
【解答】解:(1)如图所示,△A1B1C1即为所求;
(2)点A1、B1、C1的坐标分别为(2,1),(4,5),(5,2).
四、解答题(本题共3小题,每小题7分,共21分)
20.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.
(1)求∠BEC的度数.
(2)若CE=5,求BC的长.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【考点】等腰三角形的性质;线段垂直平分线的性质.
【分析】(1)ED是AC的垂直平分线,可得AE=EC;∠A=∠ACE;已知∠A=36,可求∠ACE,再根据三角形外角的性质即可求解;
(2)根据等腰三角形性质和三角形内角和定理求出∠B=∠ACB=72°,求出∠BEC=∠B,推出BC=CE即可.
【解答】解:(1)∵DE垂直平分AC,
∴CE=AE,
∴∠ECD=∠A=36°,
∴∠BEC=∠A+∠ECD=36°+36°=72°;
(2)∵AB=AC,∠A=36°,
∴∠B=∠ACB=72°,
∴∠BEC=∠A+∠ECD=72°,
∴∠BEC=∠B,
∴BC=EC=5.
21.如图,已知△ABC为等边三角形,D为BC延长线上的一点,CE平分∠ACD,
CE=BD,求证:
(1)△ABD≌△ACE;
(2)△ADE为等边三角形.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【考点】全等三角形的判定与性质;等边三角形的判定与性质.
【分析】(1)根据等边三角形的性质得出AB=AC,∠BAC=∠B=∠ACB=60°,求出∠ACE=∠B,根据SAS推出全等即可;
(2)根据全等三角形的性质得出AD=AE,∠CAE=∠BAD,求出∠DAE=∠BAC=60°,根据等边三角形的性质得出即可.
【解答】证明:(1)∵△ABC等边三角形,
∴AB=AC,∠BAC=∠B=∠ACB=60°,
∴∠ACD=120°,
∵CE平分∠ACD,
∴∠ACE=∠ACD=60°,
∴∠ACE=∠B,
在△ABD和△ACE中
∴△ABD≌△ACE(SAS);
(2)∵△ABD≌△ACE,
∴AD=AE,∠CAE=∠BAD,
∴∠DAE=∠BAC=60°,
∴△ADE为等边三角形.
22.已知(x+y)2=25,xy=,求x﹣y的值.
【考点】完全平方公式.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【分析】根据完全平方公式即可求出答案.
【解答】解:∵(x+y)2=x2+2xy+y2,
∴25=x2+y2+,
∴x2+y2=
∵(x﹣y)2=x2﹣2xy+y2,
∴(x﹣y)2=﹣=16
∴x﹣y=±4
五、解答题(本题共3小题,每小题9分,共27分)
23.在争创全国卫生城市的活动中,我区“义工队”义务清运一堆重达100吨的垃圾,清运了25吨后因附近居民主动参与到义务劳动中,使清运的速度比原来提高了一倍,前后共用5小时就完成清运,请你求出义工队原计划每小时清运多少吨垃圾?
【考点】分式方程的应用.
【分析】设义工队原计划每小时清运x吨垃圾,根据清运一堆重达100吨的垃圾,原计划清运了25吨,剩余按新工效清运,结果共用5小时就完成清运,可列方程.
【解答】解:设:义工队原计划每小时清运x吨垃圾,
得: +=5,
解得:x=12.5,
经检验:x=12.5是原分式方程的解,
答:义工队原计划每小时清运12.5吨垃圾.
24.已知:如图,∠B=90°,AB∥DF,AB=4cm,BD=10cm,点C是线段BD上一动点,点E是直线DF上一动点,且始终保持AC⊥CE.
(1)如图1试说明:∠ACB=∠CED.
(2)若AC=CE,试求DE的长.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【考点】全等三角形的判定与性质.
【分析】(1)根据∠EDC=90°,得出∠CED+∠ECD=90°,再根据∠ACE=90°,得出∠ACB+∠ECD=90°,最后根据同角的余角相等,即可得出∠ACB=∠CED;
(2)先判定△ABC≌△CDE,得出DE=BC,AB=CD=4(cm),进而得出BC=BD﹣CD=10﹣4=6(cm),根据全等三角形的对应边相等,即可得出DE=6(cm).
【解答】解:(1)如图1,∵AB∥DF,∠B=90°,
∴∠EDC=180°﹣∠ABC=90°,
∴∠CED+∠ECD=90°,
∵AC⊥CE,
∴∠ACE=90°,
∴∠ACB+∠ECD=90°,
∴∠ACB=∠CED;
(2)如图2,∵∠EDC=90°,∠B=90°,
∴∠B=∠EDC,
由(1)可得,∠ACB=∠CED,
在△ABC和△CDE中,
,
∴△ABC≌△CDE,
∴DE=BC,AB=CD=4(cm),
∴BC=BD﹣CD=10﹣4=6(cm),
∴DE=6(cm).
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
25.在△ABC中,AB=AC.
(1)如图1,如果∠BAD=30°,AD是BC上的高,AD=AE,则∠EDC= 15° .
(2)如图2,如果∠BAD=40°,AD是BC上的高,AD=AE,则∠EDC= 20° .
(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?并给予证明.
【考点】等腰三角形的性质.
【分析】(1)等腰三角形三线合一,所以∠DAE=30°,又因为AD=AE,所以∠ADE=∠AED=75°,所以∠DEC=15°;
(2)同理,易证∠ADE=70°,所以∠DEC=20°;
(3)根据三角形的一个外角等于和它不相邻的两个内角的和,∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,再根据等边对等角的性质∠B=∠C,∠ADE=∠AED,
进而得出∠BAD=2∠CDE.
【解答】解:(1)∵在△ABC中,AB=AC,AD是BC上的高,
∴∠BAD=∠CAD,
∵∠BAD=30°,
∴∠BAD=∠CAD=30°,
∵AD=AE,
∴∠ADE=∠AED=75°,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴∠EDC=15°;
(2)∵在△ABC中,AB=AC,AD是BC上的高,
∴∠BAD=∠CAD,
∵∠BAD=40°,
∴∠BAD=∠CAD=40°,
∵AD=AE,
∴∠ADE=∠AED=70°,
∴∠EDC=20°;
(3)∠BAD=2∠EDC(或∠EDC=∠BAD);理由如下:
∠AED=∠CDE+∠C,∠ADC=∠B+∠BAD,
∵AD=AE,
∴∠AED=∠ADE,
∵AB=AC,
∴∠B=∠C,
∴∠B+∠BAD=∠EDC+∠C+∠CDE,
即∠BAD=2∠CDE.
故答案为:15°;20°.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
2017年2月23日
由莲山课件提供http://www.5ykj.com/ 资源全部免费